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Abstract

In this study, we consider the exponential utility maximization
problem in the context of a jump-diffusion model. To solve this prob-
lem, we rely on the dynamic programming principle and we derive
from it a quadratic BSDE with jumps. Since this quadratic BSDE2

is driven both by a Wiener process and a Poisson random measure
having a Levy measure with infinite mass, our main work consists in
establishing a new existence result for the specific BSDE introduced.

1 Introduction

In this paper, our motivation is to study the exponential utility maximization
problem with portfolio constraints in the context of a discontinuous filtra-
tion. To handle this optimization problem, which is formulated at any time
under a conditional form, the approach consists in using both the martingale
optimality principle and BSDE techniques: this approach is the same as in
the previous papers [BEC06], [MS05] and [MOR08] already dealing with the
same problem. However and contrary to the papers [BEC06] or [MOR08]
already dealing with a discontinuous model, the originality of the present
paper is that we study existence for a specific class of quadratic BSDEs with
jumps without assuming the finiteness of the Levy measure. Relaxing this
last hypothesis, we have to establish a new existence result for the BSDE al-
ready introduced in [MOR08], which is the main achievement of this paper.
Concerning the financial problem under study, the main objectives are the
characterization of the value process in terms of the solution of an explicit
BSDE as well as the characterization of optimal strategies.

To obtain the main result, that is the existence of solutions of the specific

1A large part of the content of this work is in my PhDthesis defended at the university
of Rennes 1 in October 2007 and supervised by Professor Ying Hu

2The notation of quadratic BSDE refers to the growth with respect of the variable z
of the generator f : (s, z, u)→ f(s, z, u).
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BSDE introduced by using the dynamic programming principle, we first de-
fine an auxiliary BSDE (more precisely, we introduce a new generator which
is explicitely given in terms of the first one) and we then prove the existence
result for the auxiliary BSDE under an additional constraint on the norm of
the bounded terminal condition. For the general case, i.e. when considering
a BSDE whose terminal condition is an arbitrary bounded random variable,
we provide an explicit construction. In a last step, we first establish a corre-
spondence result between solutions of the auxiliary BSDE and those of the
original one and we then prove existence of a solution of the original BSDE
for any arbitrary random variable. In a last section, we come back and solve
the original financial problem.

The present paper is structured as follows: in Section 2, we describe the
financial model and we give preliminary notations. Then, in Sections 3 and
4, we state and prove the main results for the BSDE introduced in Section 2.
Last section consists in using results of the two previous sections to provide
answers to the original financial problem. Lengthy proofs are relegated to
the appendix.

2 The model and preliminaries

We consider a probability space (Ω, F, P) equipped with two independent
stochastic processes:

. A standard (one dimensional) brownian motion: W =(Wt)t∈[0,T ].

. A real-valued Poisson point process p defined on [0, T ]× R \ {0}. Re-
ferring to chapter 2 in [IW89], we denote by Np(ds, dx) the associated
counting measure, whose compensator is assumed to be of the form

N̂p(ds, dx) = n(dx)ds.

n(dx) (also denoted by n in the sequel) stands for the Levy measure
which is positive and satisfies

n({0}) = 0 and

∫
R\{0}

(1 ∧ |x|)2n(dx) <∞.

These two processes W and Ñp are considered on [0, T ], where T stands for
the horizon or maturity time in the financial context and, in all the sequel, T
is assumed to be fixed and deterministic. We also denote by F the filtration
generated by the two processes W and Np (and completed by N , consisting
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in all the P-null sets). Using the same notations as in [IW89], we denote by
Ñp(ds, dx) (Ñp(ds, dx) := Np(ds, dx)−N̂p(ds, dx)) the compensated measure,
which is a martingale random measure: in particular, for any predictable
and locally square integrable process K, the stochastic integral K · Ñp :=∫
Ks(x)Ñp(ds, dx) is a locally square integrable martingale.

We denote by Z ·W (resp. U · Ñp) the stochastic integral of Z w.r.t. W
(resp. the stochastic integral of U w.r.t. Ñp). Since the filtration F has the
predictable representation property, then, for any local martingale M of F ,
there exists two predictable processes Z and U such that

∀ t, Mt = M0 +
(
Z ·W

)
t
+
(
U · Ñp

)
t
.

(In Section 2.2, we provide a definition of the Hilbert spaces, where these
stochastic integrals are considered). In all the paper, we will make use of the
notation | · |∞ to refer to the norm in L∞(FT ) of any bounded FT -measurable
random variable.

2.1 Preliminaries about BSDEs

In the sequel, we denote by S∞(R) the set of all adapted processes Y with
càdlàg paths (càdlàg stands for right continuous with left limits) such that

esssup
t,ω
|Yt(ω)| <∞,

and, for any p, p > 0, we denote by Sp the set of càdlàg processes Y such
that

E
(

sup
t
|Yt|p

)
<∞.

We also introduce the set L2(W ) consisting of all predictable processes Z
such that

E
(∫ T

0

|Zs|2ds
)
<∞.

and the set L2(Ñp) consisting of all P ⊗ B(R \ {0})-measurable processes U
such that

E
(∫

[0,T ]×R\{0}
|Us(x)|2n(dx)ds

)
<∞.

P stands for the σ-field of all predictable sets of [0, T ]×Ω and B(R\{0}) the
Borel field of R\{0}. The set L0(n), which is also denoted by L0(n,R,R\{0})
in [BEC06], consists of all the functions u mapping R in R \ {0} and it is
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equipped with the topology of convergence in measure. Finally, L2(n) stands

for the subset of all functions in L0(n) such that: E
( ∫ T

0

|u(x)|2n(dx)
)
<∞

and L∞(n) stands for the subset of all functions u in L0(n) which takes
bounded values (almost surely).

A solution of a BSDE with jumps of the form

Yt = B+

∫ T

t

f(s, Ys−, Zs, Us)ds−
∫ T

t

ZsdWs−
∫ T

t

∫
R∗
Us(x)Ñp(ds, dx), (1)

which is characterized by a bounded terminal condition B and a generator
f satisfying ∫ T

0

|f(s, Ys, Zs, Us)|ds <∞, P-a.s.,

is a triple of processes (Y , Z, U) which is in S∞(R)×L2(W )×L2(Ñp). In this
paper, we study a specific class of BSDE with jumps of the previous form.
Besides and since we do not work on a brownian filtration, the processes Z
and U have to be predictable, for any solution of the BSDE (1) .

2.2 Description of the model

For sake of completeness, we provide the description of the financial context
which is similar as in [MOR08]. The financial market consists in one risk-free
asset (assumed to have zero interest rate) and one single risky asset, whose
price process is denoted by S. More precisely, the stock price process is a
one dimensional semimartingale satisfying

dSs = Ss−

(
bsds+ σsdWs +

∫
R∗
βs(x)Ñp(ds, dx)

)
. (2)

All processes b, σ and β are assumed to be bounded and predictable and, in
addition, β satisfies: β > −1. This last condition implies that the stochastic
exponential E(β · Ñp) is positive, P-a.s.: hence, the price process S is itself
almost surely positive. The boundedness of β, σ and θ ensures both existence
and uniqueness results for the SDE (2). Then, provided that: σ 6= 0, we can
define θ by: θs = σ−1

s bs (P-a.s. and for all s). The process θ, also called
market price of risk process, is supposed to be bounded and, under this
assumption, the measure Pθ with density

dPθ

dP
= ET (−

∫ .

0

θsdWs),
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is a risk-neutral measure, which means that, under Pθ, the price process S is
a local martingale.

In what follows, we introduce the usual notions of trading strategies and
self financing portfolio, assuming that all trading strategies are constrained
to take their values in a closed set denoted by C. In a first step and to
make easier the proofs, this set C is supposed to be compact3. Due to the
presence of constraints in this model with finite horizon T , not any FT -
measurable random variable B is attainable by using contrained strategies.
In that context, we adress the problem of characterizing dynamically the
value process associated to the exponential utility maximization problem (in
the sequel, we denote by Uα the exponential utility function with parameter
α, which is defined on R by: Uα(·) = − exp(−α·)).

Definition 1 A predictable R-valued process π is a self-financing trading
strategy, if it takes its values in a constraint set C and if the process Xπ,t,x

such that

∀ s ∈ [t, T ], Xπ,t,x
s := x+

∫ s

t

πs
dSs
Ss−

, (3)

is in the space H2 of semimartingales (see chapter 4, [PRO04]). Such a
process Xπ = Xπ,t,x stands for the wealth of an agent having strategy π and
wealth x at time t.

Now, as soon as the constraint set C is compact, the set consisting of all
constrained strategies satisfies an additional integrability property.

Lemma 1 Under the assumption of compactness of the constraint set C, all
trading strategies π := (πs)s∈[t,T ] as introduced in Definition 1 satisfy

{exp(−αXπ
τ ), τ F-stopping time } is a uniformly integrable family. (4)

For the proof of this lemma, we refer to [MOR08]. We make use of the
notationAt for the admissibility set (in the case when t = 0, we simply denote
it by A.): in this notation, the subscript t indicates that we start the wealth
dynamics at time t: more precisely, this set consists in all the strategies
whose restriction to the interval [0, t] is equal to zero and which satisfy both
Definition 1 and the condition (4). This last integrability condition is of
great use in Section 4 to justify the expression of the value process (and,

3As in [MOR08], the compactness assumption on the constraint C ensures that the
BMO properties given in (H2) in Section 3.1 are satisfied: thanks to these properties, we
can prove a comparison result for the BSDE with generator having the generator defined
in (5). In a last section of this aforementionned paper and by means of an approximating
procedure, the existence result is obtained without this restrictive hypothesis.
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more particularly, to justify the supermartingale property of some family of
processes as already introduced in [HIM05] in a Brownian setting). To
conclude this paragraph, we introduce the notion of BMO martingales which
can also be found in [DEL80]: a martingale M is said to be in the class
of BMO martingales if there exists a constant c, c > 0, such that, for all
F -stopping time τ ,

esssup
Ω

EFτ (〈M〉T − 〈M〉τ ) ≤ c2 and |∆Mτ |2 ≤ c2.

(In the continuous case, the BMO property follows from the first condi-
tion, whereas, in the discontinuous setting, we need to ensure the bound-
edness of the jumps of M). The following result, referred as Kazamaki’s
criterion and also stated in [KAZ79], relates the martingale property of a
stochastic exponential to a BMO property.

Lemma 2 (Kazamaki’s criterion) Let δ be such that: 0 < δ <∞ and
M a BMO martingale satisfying: ∆Mt ≥ −1 + δ, P-a.s. and for all t, then
E(M) is a true martingale.

3 The quadratic BSDE with jumps

3.1 Main assumptions

In all the sequel, we use the explicit form of the generator f

f(s, z, u) = inf
π∈C

(
α

2
|πσs − (z +

θs
α

)|2 + |u− πβs|α
)
− θsz −

|θs|2

2α
, (5)

where the processes β, θ and σ are defined in Section 2.1. This expression of
the generator will be justified in Section 4. We introduce the notation | · |α
as being the convex functional such that

∀ u ∈ (L2 ∩ L∞)(n), |u|α =

∫
R\{0}

exp(αu(x))− αu(x)− 1

α
n(dx),

=

∫
R\{0}

gα(u(x))n(dx),

with the real function gα defined by: gα(y) = exp(αy)−αy−1
α

. In all the paper, B
is a bounded FT -measurable random variable and we use these two standing
assumptions on the generator f
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(H1). The first assumption denoted by (H1) consists in specifying both a
lower and an upper bound for f

∀ z, u ∈ R× (L2 ∩ L∞)(n)

−θsz − |θs|
2

2α
≤ f(s, z, u) ≤ α

2
|z|2 + |u|α, P-a.s. and for all s.

(H2). The second assumption, referred as (H2), consists in two estimates: the
first one deals with the increments of the generator f w.r.t. z

∃ C > 0, κ ∈ BMO(W ), ∀ z, z′ ∈ R, ∀u ∈ L2(n(dx)),

|f(s, z, u)− f(s, z′, u)| ≤ C(κs + |z|+ |z′|)|z − z′|

The second estimate deals with the increments w.r.t. u

∀z ∈ R, ∀ u, u′ ∈ (L2 ∩ L∞)(n(dx)),

f(s, z, u)− f(s, z, u′) ≤
∫

R\{0}
γs(u, u

′)(u(x)− u′(x))n(dx),

with the following expression for γs(u, u
′
) for all s

γs(u, u
′) =

sup
π∈C

(∫ 1

0

g
′

α(λ(u− πβs) + (1− λ)(u′ − πβs)(x))dλ

)
1u≥u′

+ inf
π∈C

(∫ 1

0

g
′

α(λ(u− πβs) + (1− λ)(u′ − πβs)(x)dλ

)
1u<u′ ,

and this last expression holds, for any fixed s, ω. Considering now two
arbitrary predictable processes U , U

′
taking their values in L2∩L∞(n)

and if we define the process γ̃ for all s by

γ̃s = γs(Us, U
′

s), (6)

then, γ̃ is a predictable process and it is explicitely given in terms of
both the predictable processes U , U

′
and β. For the proof of these

two estimates and the justification of the expression of γ, the reader is
referred to [MOR08]. To conclude this paragraph, we justify the BMO
property of the process given by (6): for this, we use the compactness
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of C and we assume that both processes U and U ′ take their values
L2 ∩ L∞(n(dx)) and that: |Us|L∞(n), |U ′s|L∞(n) ≤ K, to argue that

∃ δK , C̄K > 0, s.t. − 1 + δK ≤ γs(Us, U
′

s) ≤ C̄K ,

which entails, in particular, that this process is in BMO(Ñp). We rely
on this BMO property in the proof of the uniqueness result to justify
the use of Girsanov’s theorem.

3.2 Theoretical results

To prove the main existence result, which is the existence of solutions of
BSDEs with generator f given by (5) and terminal condition B (B being an
arbitrary bounded random variable), we need to consider an auxiliary BSDE
with parameters (f̃ , B̃): more precisely, we consider the generator f̃ defined
in terms of f as follows

f̃(s, z, u) = f(s, z − θs
α
, u)− f(s,−θs

α
, 0).

In the first step, we motivate the introduction of this auxiliary BSDE by
proving an existence result: to do this, the idea consists in establishing precise
a priori estimates given by (9) to justify, in a second step, a new stability
result, which is similar as in [MOR08]. This will be done under an explicit
constraint on the terminal condition. In the following theorem, we state the
two main existence results of this paper.

Theorem 1 (i) For any BSDE of the form (1) with generator f̃ and terminal
condition B satisfying

∀ k > 0, E (exp(k|B|)) <∞,

there exists at least one solution (Y, Z, U) such that exp(Y ) is in Sp, for any
p, p > 0, and (Z,U) is in L2(W )× L2(Ñp).
(ii) For any BSDE of the form (1) with generator f and terminal condition
B̄, such that B̄ is an arbitrary bounded random variable, there exists at least
one solution (Ȳ , Z̄, Ū) in S∞ × L2(W )× L2(Ñp).

For later use, we provide here some a priori estimates for solutions of
BSDEs with jumps having a bounded terminal condition (the proof of this
lemma can be found in [MOR08]).

Lemma 3 For any BSDE of the form (1) with a generator g satisfying (H1)
and a bounded terminal condition B, there exists three explicit constants C1,
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C2 and C3 given in terms of |B|∞, |θ|S∞(R) and α, and such that, for any

solution (Y , Z, U) in S∞(R)×L2(W )×L2(Ñp) and for any F-stopping time
τ , τ taking its values in [0, T ],

(i) P-a.s. and for all t, t ∈ [0, T ], C1 ≤ Yt ≤ C2,

(ii) EFτ (
∫ T

τ

|Zs|2ds+

∫ T

τ

∫
R∗
|Us(x)|2n(dx)ds) ≤ C3.

Corollary 1 Under the same assumptions than in Lemma 3 on the param-
eters g and B and for any solution (Y , Z, U) in S∞(R)× L2(W )× L2(Ñp)
of the BSDE (1),

• there exists a predictable version Ũ of U such that: Ũ ≡ U (in L2(Ñp)).
Noting U instead of Ũ , this process satisfies4

|Us|L∞(n) ≤ 2|Y |S∞(R).

• The following equivalence result

∃ C > 0,
1

C
E
∫

[0,T ]×R\{0}
|Us(x)|2n(dx)ds ≤ E

∫ T

0

|Us|αds

≤ CE
∫

[0,T ]×R\{0}
|Us(x)|2n(dx)ds, (7)

holds for a constant C depending only on α and |Y |S∞(R).

3.3 Proof of the main existence result

First and for sake of clarity, we give an outline of the content of this section.
To prove Theorem 1, we proceed with the following steps
• In a first step, we introduce the auxiliary generator f̃ such that

f̃(s, z, u) = f(s, z − θs
α
, u)− f(s,−θs

α
, 0), (8)

and we then establish an existence result for the BSDEs given by (f̃ , B
N

) by
providing a sufficient condition on the integer N .

4Here and contrary to Corollary 1 in [MOR08], since the Levy measure satisfies:
n(R∗) = ∞, we cannot deduce that u takes its values in L2(n), using the fact that it
is in L∞(n).
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• In a second step and to prove existence for the BSDE given by (f̃ , B)
for any bounded FT -measurable random variable B, we proceed with an i-
terative 5 procedure. To this end, we construct a sequence of BSDEs given
by (f i, B

N
) such that, under the assumption that there exists a solution

(Ỹ i, Z̃i, Ũ i) up to step k, the triple (Ȳ k, Z̄k, Ūk) with: Ȳ k =
∑
i

Ỹ i, solves

the BSDE with parameters (f̃ ,
k∑
i=1

B

N
). Provided this construction can be

iterated up to step N , the process Y defined by: Y = Ȳ N solves the BSDE
with parameters (f̃ , B).
• The third step consists in establishing a correspondence result between a
solution of the BSDE given by the parameters (f̃ , B) and a solution of the
BSDE with parameters (f, B̄), with B̄ explicitely given in terms of B.
• Finally, in a last step, we extend the results of Step 2 to the case when
the terminal condition may be unbounded (but admits at least exponential
moments of any order). This is done by using the same methodology as in
[BH06]: this step allows to prove existence for solutions of the BSDE with
generator f when the terminal condition is arbitrary and bounded.

3.3.1 Step 1: first approximation

Construction and basic properties Since we are dealing with a BSDE
with jumps whose generator has quadratic growth, we rely on the same proce-
dure as in [MOR08]: this consists in constructing an approximating sequence
of generators denoted by (fm). To this end, we introduce the constant M ,
the truncation function ρm and the measure nm as follows
(i) M = 2(C1 + C2) (these two constants are given in (i)(a), Lemma 3).
(ii) ρm is an arbitrary truncation function at least continuously differentiable
and such that: ρm(z) = 0, if |z| ≥ m + 1 and ρm(z) = 1, if |z| ≤ m, and
0 ≤ ρm(z) ≤ 1 if 0 ≤ z ≤ 1.
(iii) nm is the finite measure defined by

nm(dx) = 1|x|≥ 1
m
n(dx).

This being set, we define the sequence (fm) by

fm(s, z, u) = inf
π∈C

(
α

2
|πσs − (z +

θs
α

)|2ρm(z) +

∫
R∗
gα(u− πβs)ρM(u(x))nm(dx)

)
−zθs − |θs|

2

2α
,

5The construction is iterative in the following sense that the generator f i+1 is defined
in terms of f i.
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and we then introduce (f 1,m) by setting

f 1,m(s, z, u) = fm(s, z − θs
α
, u)− f(s,−θs

α
, 0).

Since 0 is in the set C, the infimum in the expression of fm(s, −θs
α
, 0) is equal

to zero and hence, we obtain: fm(s, −θs
α
, 0) = f(s, −θs

α
, 0) = |θs|2

α
, implying

that
∀ m, f 1,m(s, 0, 0) ≡ 0, P-a.s. and for all s.

We provide below a list of the essential properties satisfied by (f 1,m)

1. Due to the truncation procedure, the generator f 1,m is lipschitz with
respect to z and u, i.e. there exists a constant Cm depending only on
the bounded parameters θ, β, and on the constants α and sup

π∈C|
|π|, such

that

|f 1,m(s, z, u)− f 1,m(s, z
′
, u
′
)| ≤ Cm

(
|z − z′ |+ |u− u′ |L2(n)

)
.

Hence, for each m and and N being a fixed integer, we get existence
of a solution in S2×L2(W )×L2(Ñp) of the BSDE given by (f 1,m, B

N
):

we denote it by (Y 1,m, Z1,m, U1,m).

2. The sequence (f 1,m) is increasing and converges, P-a.s and for all s, to
f̃ in the following sense

f 1,m(s, z, u)↗ f̃(s, z, u), as m goes to∞.

Using both the Lipschitz property, the monotonicity of (f 1,m), the property
(H2) and the comparison result in Theorem 2.5 in [ROY06], (Y 1,m) is in-
creasing and hence, we can define Ỹ as follows

Ỹs := lim↗ Y 1,m
s , P-a.s. and for all s.

From the second assertion in Lemma 3, both the two sequences (Z1,m) and
(U1,m) are bounded respectively in L2(W ) and L2(Ñp): this entails the exis-
tence of weak limits denoted by Z̃ and Ũ .

To conclude this paragraph and for later use, we give a precise estimate
of the norm of Y 1,m in S∞

|Y 1,m
s |S∞ ≤

|B|∞
N

, P-a.s. and for all s. (9)
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(For sake of completeness, a detailed proof is provided in the first appendix
A1.) This estimate, which is independent of m, is essential in the proof of
the monotone stability result given in the next paragraph: in particular, this
allows to obtain the condition (10) on N and establish the existence result
for the BSDE with parameters (f̃ , B

N
).

The stability result: convergence of the approximating sequence
To justify that (Ỹ , Z̃, Ũ) solves the BSDE given by (f̃ , B

N
), we prove the

same kind of stability result as in [KOB00] for the approximating sequence
of BSDEs given by (f 1,m, B

N
). To this end, we justify the three following

convergence results
(i) Z1,m → Z̃ (in L2(W )), as m→∞,
(ii) U1,m → Ũ , (in L2(Ñp(dx, ds))), as m→∞,

(iii) E
( ∫ t

0

|f 1,m(s, Z1,m
s , U1,m

s )− f̃(s, Z̃s, Ũs)|ds
)
→ 0, as m→∞.

Assertions (i) and (ii) correspond to the strong convergence of the sequences
(Z1,m) and (U1,m) to Z̃ and to Ũ in their respective Hilbert spaces. The proof
being tedious and merely technical, it is relegated to the end in Appendix
A2: we just give here the constraint condition on N : MB being an upper
bound of B in L∞(FT ), N should satisfy

MB

N
≤ inf{ 1

32α
,

1

16C
}, (10)

where C is a constant depending only on α and |B|∞.
To prove the convergence in L1(ds ⊗ dP) stated in (iii), we apply the

dominated convergence theorem by checking:

• The convergence of (f 1,m(s, Z1,m
s , U1,m

s )) to f̃(s, Z̃s, Ũs), in ds ⊗ dP-
measure,

• The existence of a uniformly integrable control of (f 1,m(s, Z1,m
s , U1,m

s ))
(independent of m).

The second assertion results easily from the inequality

|fm(s, Z1,m
s − θs

α
, U1,m

s )|

≤ max

{(α
2
|Z1,m

s − θs
α
|2 + |U1,m

s |α
)
;
(
− θs(Z1,m

s − θs
α

)− |θs|
2

α

)}
.
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To conclude for this second assertion, we rely on the uniform integrability of
(|Z1,m − θ

α
|2) and (|U1,m|α), which results from their convergence in L1(ds⊗

dP) and on the boundedness assumption on θ. To prove the first point, we
state an auxiliary result.

Lemma 4 For all s and for all converging sequences (zm)m and (um)m re-
spectively in R and L2(n(dx)), such that the sequence (um) is uniformly
bounded in L∞(n) and satisfies:

∃ C > 0, sup
m
|um|L2(n) ≤ C,

we have

f 1,m(s, zm, um)→ f̃(s, z, u), P-a.s. and for all s, as m→∞.

The proof of this lemma results from the convergence of (zm) and (um) (re-
spectively to z and u) and the simple convergence of (f 1,m) to f̃ .
Without loss of generality and using the convergence results given in (i) and
(ii), we can now assume6 that both (Z1,m

s ) and (U1,m
s ) converge in ds ⊗ dP-

measure to Z̃s and Ũs respectively in R and in L2(n): this entails the con-
vergence in L1(ds⊗ dP) of (f 1,m(s, Z1,m

s , U1,m
s )) to f̃(s, Z̃s, Ũs).

Passing to the limit in the equation satisfied by Y 1,m

Y 1,m
t =

B

N
+

∫ T

t

f 1,m(s, Z1,m
s , U1,m

s )ds−
∫ T

t

Z1,m
s dWs −

∫ T

t

∫
R\{0}

U1,m
s (x)Ñp(ds, dx)

(11)
the increasing limit Ỹ satisfies

Ỹt =
B

N
+

∫ T

t

f̃(s, Z̃s, Ũs)ds−
∫ T

t

Z̃sdWs −
∫ T

t

∫
R\{0}

Ũs(x)Ñp(ds, dx) (12)

Substracting (11) and (12) and taking successively the supremum over t and
the expectation, we get

E
(

sup
t∈[0,T ]

|Y 1,m
t − Ỹt|

)
→ 0,

and this last convergence result follows from the use of the Doob’s inequalities
for the square integrable martingales (Z1,m− Z̃) ·W and (Ũ −U1,m) · Ñp and
the respective convergence of (Z1,m − Z̃) in L2(W ) and of (Ũ − U1,m) in
L2(Ñp(dx, ds)).

6To ensure the convergence in ds⊗ dP-measure, we ought to consider subsequences.
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3.3.2 Step 2: the iterative procedure

In this step, we justify the existence result for the BSDE with parameters
(f̃ , B) (B being an arbitrary bounded FT -measurable random variable).

An iterative construction We provide here the explicit construction of a
sequence of intermediate BSDEs with parameters (f (i), B

N
) such as described

at the beginning of section 3.3.

1 We initialize by setting: f (1) := f̃ : the first step provides a solution
for the BSDE with parameters (f (1), B

N
) as soon as: N ≥ N1 with N1

satisfying (10). We denote it by (Ỹ 1, Z̃1, Ũ1).

2 Assuming that the sequence (f (k)) is constructed up to step k, k ≥
1, and that each BSDE given by (f (i), B

N
) (for an integer N to give

explicitely) admits a solution (Ỹ i, Z̃i, Ũ i), we define the generator f (k+1)

by setting

f (k+1)(s, z, u) = f̃(s, z + Z̄k
s −

θs
α
, u+ Ūk

s )− f̃(s, Z̄k
s −

θs
α
, Ūk

s ),

with: Z̄k =
∑
i≤k

Z̃i and Ūk =
∑
i≤k

Ũ i.

Provided we justify the existence of a solution (Ỹ i, Z̃i, Ũ i) for all i, i ≤ k,
and using the definition of each f (i), we obtain

k∑
i=1

f (i)(s, Z̃i
s, Ũ

i
s) = f̃(s, Z̄k

s , Ū
k
s ),

and hence, the triple (Ȳ k, Z̄k, Ūk) such that: Ȳ k =
k∑
i=1

Ỹ i, solves the BSDE

with parameters f̃ and
k∑
i=1

B

N
. After N iterations, it gives to a solution of

the BSDE with parameters (f̃ , B).

New stability result In the following two paragraphs, we explain the
construction of a solution of the BSDE with parameters (f (2), B

N
): this cor-

responds to the second step of the iteration procedure and in a last paragraph,

14



we briefly explain how and why this can be iterated for any k, k ≥ 2.

To justify the existence of a solution of the BSDE given by (f (2), B
N

), we
proceed analogously as in Section 3.3.1 by providing an explicit constraint on
the integer N (we deal with this technical issue in Appendix A3). Keeping
the same notation for fm, we introduce 7 the sequence (f 2,m)m as follows

f 2,m(s, z, u) := fm(s, z + Z1,m
s − θs

α
, u+ U1,m

s )− fm(s, Z1,m
s − θs

α
, U1,m

s ).

Using the same argumentation as in Step 1, we obtain a solution (Y 2,m, Z2,m, U2,m)
of the BSDE given by (f 2,m, B

N
). f 2,m satisfying (H1), both sequences (Z2,m)

and (U2,m) are uniformly bounded respectively in L2(W ) and in L2(Ñp) and
we denote by Z̃2 and Ũ2 their respective weak limits.
By definition, the generator f 2,m satisfies: f 2,m(s, 0, 0) ≡ 0, and hence, using
the same procedure as described in Appendix A1, we get that any bounded
solution Y 2,m satisfies

|Y 2,m|S∞ ≤
∣∣B
N

∣∣
∞. (13)

Now, to prove the existence of an almost sure limit for (Y 2,m), we cannot
proceed as in Step 1, since we do not have any monotonicity property for
(Y 2,m): in fact, the sequence (f 2,m) is neither increasing nor decreasing:
however, if we consider f̄ 2,m defined by: f̄ 2,m = f 2,m+f 1,m, then (Y 2,m+Y 1,m)
is increasing and we can define Ȳ 2 as follows

Ȳ 2
s = lim

m
↗
(
Y 2,m
s + Y 1,m

s

)
, P-a.s and for all s.

Since (Y 1,m
s ) is increasing and converges to Ỹs, P-a.s. and for all s, (Y 2,m

s )
converges to Ỹ 2

s defined by: Ỹ 2
s = Ȳ 2

s − Ỹs.
In the following paragraph, we prove a convergence result for the sequence
(Y 2,m, Z2,m, U2,m) and identify its limit (Ỹ 2, Z̃2, Ũ2) as a solution of the
BSDE given by (f (2), B

N
).

7Assuming the procedure can be applied up to step k, then, for any k, k ≥ 2, we define
fk+1,m analogously

fk+1,m(s, z, u) := fm(s, z + (Z̄k,m
s − θs

α
), u+ Ūk,m

s )− fm(s, Z̄k,m
s − θs

α
, Ūk,m

s ),

and since (Z̄k,m) (resp. (Ūk,m)) is uniformly bounded in L2(W ) (resp. in L2(Ñp)), the
generator fk+1,m satisfies again the same growth condition and control of the increments
as f2,m.
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Convergence of the approximating sequence As in Section 3.3.1, we
have to prove the strong convergence of (Z2,m) to Z̃2 in L2(W ) (respectively
of (U2,m) to Ũ2 in L2(Ñp)) and then justify a new stability result for the
solutions of the BSDEs with parameters (f 2,m, B

N
).

For sake of clarity, the proof of the strong convergence of (Z2,m) and
(U2,m) is relegated to Appendix A3: using this last result and proceeding the
same way as in the second paragraph in Section 3.3.1, we get

E
(

sup
t
|Y 2,m
t − Ỹ 2

t |
)

+ |Z2,m − Z̃(2)|L2(W ) + |U2,m − Ũ (2)|L2(Ñp) → 0,

and we identify the triplet (Ỹ (2), Z̃(2), Ũ (2)) as a solution of the BSDE with
parameters (f (2), B

N
), N satisfying (30) which is the new constraint8 obtained

in Appendix A3.

End of the iteration procedure In Step 1, we have obtained a triple
(Ỹ , Z̃, Ũ) solving the BSDE with parameters (f̃ , B

N
) under the condition (10)

on N and, in the previous paragraph, a solution (Ỹ 2, Z̃2, Ũ2) of the BSDE
with parameters (f 2, B

N
) under the more restrictive condition (30). Defin-

ing Ȳ 2 by: Ȳ 2 = Ỹ + Ỹ 2 (Z̄2 and Ū2 being defined analogously), then
(Ȳ 2, Z̄2, Ū2) solves the BSDE given by (f̃ , 2B

N
) (this holds if we choose for

N the minimal integer satisfying (30)). To conclude, we distinguish two cases

1. If we can choose N = 2, then the triple (Ȳ 2, Z̄2, Ū2) is the desired so-
lution of the BSDE with generator f̃ and terminal condition B.

2. In the second case, we proceed with at least one further iteration of
the procedure described in step 2. For any k, k ≥ 2, we check that, for
fixed k, each generator fk,m, whose expression is provided in the foot-
note given in the second paragraph of Step 2, satisfies an assumption
similar to (H2) and the property: fk,m(s, 0, 0) ≡ 0. Under these two
last assumptions and referring to the proof given in Appendix A1, the
following estimate holds for any k and m

|Y k,m|S∞ ≤
|B|∞
N

.

Therefore, both the construction described in subsection 3.3.2 for the
case k = 2 and the method to establish the stability result (for the

8To obtain this constraint on the integer N , we rely on the fundamental estimate given
by (13).
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detailed proof of the convergence result, we refer to Appendix A3) can
be iterated up to step k, k ≥ 2 and in particular, at each step i, i ≥ 2,
the condition (30) obtained in the third appendix remains unchanged.
If we denote by N1 the minimal integer satisfying (30) and if we then
define (Y, Z, U) by: (Y, Z, U) := (Ȳ N1

, Z̄N1
, ŪN1

), with Ȳ N1
such that:

Ȳ N1
=

N1∑
i=1

Ỹ (i), this provides a solution of the BSDE with parameters

(f̃ , B) and ends the iteration procedure.

3.3.3 Step 3: Conclusion

In the previous steps, we have proved the existence of a solution of the
BSDE (2) with parameters (f̃ , B), where B is an arbitrary bounded and FT -
measurable variable. Using this, we prove an existence result for the BSDE
with parameters (f , B̄), where the terminal condition B̄ can be expressed in
terms of B.
Thanks to the two first steps, we can claim the existence of a triple (Y, Z, U)
such that

Yt = B+

∫ T

t

[f(s, Zs −
θs
α
, Us)− f(s,−θs

α
, 0)]ds

−
∫ T

t

ZsdWs −
∫ T

t

∫
R\{0}

Us(x)Ñp(ds, dx),

which is well defined for any bounded random variable B. If we define the
processes Ȳ , Z̄ and Ū as follows

Ȳs =
(
Ys −

∫ s

0

f(u,−θu
α
, 0)du−

∫ s

0

θu
α
dWu

)
, Z̄s = Zs −

θs
α

and Ūs = Us,

(14)
then, Ȳ solves the following BSDE

Ȳt = B̄ +

∫ T

t

f(s, Z̄s, Ūs)ds−
∫ T

t

Z̄sdWs −
∫ T

t

∫
R\{0}

Ūs(x)Ñp(ds, dx),

with generator equal to f and terminal condition B̄ equal to

B̄ = B −
∫ T

0

f(s,−θs
α
, 0)ds−

∫ T

0

θs
α
dWs. (15)

Due to (15), the terminal condition B̄ is no more in L∞(FT ) and similarly,
considering the first relation in (14), Ȳ is not in S∞ but it only satisfies that
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exp(Ȳ ) is in Sp, for any p, p > 0. To prove this, we use that

exp(αȲt) = exp(αYt)E
(
− θ ·W

)
, (16)

and we then rely on the boundedness of the process θ and on Novikov’s
criterion to obtain that E

(
− θ ·W

)
admits moments of any order. Since Y

is in S∞, we obtain that Ȳ admits exponential moments (the same holds for
the terminal condition B̄), which achieves the proof of (i) in Theorem 1.
Now, to obtain a solution for BSDE with parameters f and B̄, B̄ being
an arbitrary bounded random variable, we need to prove a more general
existence result for BSDEs with generator f̃ : this is the aim of the following
section.

4 An existence result under more general con-

dition

In this section, we prove an existence result for solutions of BSDEs with
generator f̃ and terminal condition B, under the restrictive condition that
the terminal condition B has exponential moments of any order: i.e.,

∀ k > 0, E (exp(k|B|)) <∞. (17)

To achieve this aim, we adapt the procedure given in [BH06] in the discon-
tinuous setting intoduced in the first paragraph in Section 2 and, for sake of
clarity, we split the proof into three main steps.
Before proceeding with the proof, we give here the two properties (H

′
1) and

(H
′
2) satisfied by f̃ . We first check that there exists both a strictly positive

constant K and a non negative process ᾱ satisfying:

∫ T

0

ᾱsds ≤ a and such

that

(H
′

1) − θz ≤ f̃(s, z, u) ≤ ᾱs +
K

2
|z|2 + |u|K ,

which holds true if we take: ᾱ = |θ|2
α

and K = 2α. Furthermore, the generator

f̃ satisfies a new assumption denoted by (H
′
2) in the sequel and very similar

to (H2) stated in section 3.1 for the generator f . More precisely, for any z1,
z2 in R and any (u1, u2) in L2 ∩ L∞(n), we have

(1)

f̃(s, z1, u1)− f̃(s, z2, u1) = f(s, z1 − θs
α
, u1)− f(s, z2 − θs

α
, u2)

= λ
′
(z1, z2)(z1 − z2),
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with λ
′

defined as follows λs(z
1, z2) = f(s,z1,u)−f(s,z2,u)

z1−z2 , if z1 − z2 6= 0,

λs(z
1, z2) = 0, otherwise.

and satisfying in particular that, as soon as Z1 and Z2 are in BMO(W ),
the BMO property holds also for the process λ

′
(Z1, Z2).

(2)

f̃(s, z1, u1)− f̃(s, z1, u2) =

∫
R∗
γs(u

1, u2)(u1 − u2)n(dx),

where γ has already been introduced in assumption (H2) in Section 3.1.

Step 1: Comparison result and a priori estimates For later use, we
provide here both a comparison theorem and a priori estimates.

Lemma 5 Considering two bounded terminal conditions ξ1 and ξ2, if we de-
note by (Y 1, Z1, U1) (resp. (Y 2, Z2, U2)) the solution in S∞×L2(W )×L2(Ñp)
of the BSDE with parameters (f̃ , ξ1) (resp. (f̃ , ξ2)), then, as soon as:
ξ1 ≤ ξ2, we have: Y 1

t ≤ Y 2
t , P-a.s. and for all t.

Since the proof is based on the same ingredients as those given in Appendix
A1, we skip the details and we just give the main steps:
• a standard linearization of the increments of the generator f̃

f̃(s, Z1
s , U

1
s )− f̃(s, Z2

s , U
2
s ),

obtained by relying on the assumption (H
′
2).

• an appropriate change of measure and a localization procedure to charac-
terize Y 1 − Y 2 as a Q̃-submartingale (for a suitable equivalent measure Q̃)
and equal to the non positive random variable (ξ1 − ξ2) at time T .

Lemma 6 If we consider a BSDE with generator satisfying (H
′
1) and bounded

terminal condition B, then, for any solution in S∞ × L2(W ) × L2(Ñp), we
have

∃ a, K > 0, C s.t. − CE
(
|B|2|Ft

) 1
2 ≤ Ȳt ≤

1

K
ln E (exp(K(B + a))|Ft) ,

(18)
where the constant K can be taken equal to 2α, the constant C can be taken
equal to the norm in S2 of the stochastic exponential E(−θ ·W ) 9 and the con-

9To justify that the stochastic exponential E(−θ·W ) is in S2, we use Novikov’s criterion.
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stant a already introduced in (H
′
1) corresponds to an upper bound of

∫ T

0

ᾱsds.

Since it is very similar as in [MOR08], we only give the main ingredients:
for the upper bound, it relies both on the application of Itô’s formula to
exp(KY ) and on standard computations. For the estimate in the left-hand
side in (18), we use that the lower bound of f̃ has linear growth with respect
to its variable z and that f̃ is such that: f̃(s, 0, 0) ≡ 0. Hence, Y is greater
than the solution of the linear BSDE with generator −θz and terminal con-
dition B, which is equal to EPθ(B|Ft), with dPθ

dP = E(−θ ·W ): the terminal
condition being bounded (and hence square integrable), a lower estimate is
given by the expression in the left-hand side of (18).

�

Step 2: the stability result In this paragraph, we explain the construc-
tion of a sequence of BSDEs and, for this sequence, we prove an extended
stability result. To this end, we make use of a localization procedure which
is analogous as in [BH06].
Our first aim is to obtain uniform a priori estimates, for any sequence of so-
lutions (Ȳ n, Z̄n, Ūn) of BSDEs with parameters (f̃ , Bn), when the sequence
(Bn) of terminal conditions is uniformly bounded in S∞.

In all the sequel, we make use of the following standing assumption on B

(B ≥ 0)10 and (B satisfies (17)). (19)

We then define (Bn) as follows: Bn = B ∧ n. Using the results of Section 3,
the BSDE with parameters f̃ and Bn has a solution (Ȳ n, Z̄n, Ūn) such that
Ȳ n is in S∞. Thanks to the priori estimates given by (18) in Lemma 6 and
using that Bn satisfies: 0 ≤ Bn ≤ B, we obtain

0 ≤ Ȳ n
t ≤

1

K
ln E

(
exp

(
K(B + a)

)
|Ft
)
,

where the expression of K is explicited in the first step. Due to assump-
tion (17), the random variable in the right-hand side is almost surely finite.

10For the general case, we refer to [BH06]: setting first: Bn, p = B ∧ n − (−B ∧ p),
we construct a sequence (Ȳ n, p) of solutions of the BSDEs given by (f̃ , Bn, p) such that
it is decreasing w.r.t p. The next step consists in establishing a stability result for this
decreasing sequence, which is skipped here since it is analogous to the proof of Lemma 7
and relies on the same kind of localization procedure and on the lower estimate obtained
in (18).
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The first step of the localization procedure consists in introducing a se-
quence (τk)k of stopping times as follows

τk = inf{t, 1

K
ln E (exp(K(B + a))|Ft) ≥ k} ∧ T.

If we then fix k and if we denote by Ȳ k,n the process such that: Ȳ n,k
t = Ȳ n

t∧τk,
Ȳ k,n solves the BSDE with parameters f̃k = f̃1τk≤T and ξn,k defined by

ξn,k =


Bn, if τk = T,

Ȳ n
τk
, if τk < T.

k being fixed, we can now state a new stability result11 for the sequence
(Ȳ k,n, Z̄k,n, Ūk,n) of solutions of the BSDEs with parameters (f̃k, ξn,k).

Lemma 7 Under the two following assumptions on the sequence of BSDEs
with parameters (fn, ξn,k)n
• for all n, fn = f̃k, with f̃k satisfying assumption (H

′
1),

• (ξn,k) is increasing and uniformly bounded in S∞,
and if, in addition, there exists a sequence (Ȳ k,n, Z̄k,n, Ūk,n) of solutions for
the BSDEs with parameters (f̃k, ξn,k) such that (Ȳ k,n) is increasing then,
there exists a triple (Ȳ k, Z̄k, Ūk) such that

E

(
sup
[0,T ]

|Ȳ k,n
t − Ȳ k

t |

)
+ |Z̄n,k − Z̄k|L2(W ) + |Z̄n,k − Ūk|L2(Ñp) → 0, (20)

and this triple solves the BSDE given by (f̃k, ξk) (with ξk defined by: ξk =
sup
n
ξn,k).

To justify this stability result for the sequence of BSDEs with parameters
(fn, ξk,n), we proceed analogously as in Appendix A2. We first check all
the required assumptions: by definition, (ξn,k) is an increasing sequence of
bounded terminal conditions such that: sup

n
|ξn,k| ≤ k and, for all n, the

generator fn equal to f̃k satisfies the same assumptions than f̃ : hence, we
deduce
• the sequence (Ȳ k,n) is increasing (this results from the comparison result
which is stated in lemma 5),

11For a very similar result in the brownian setting, we also refer to Lemma 3 in [BH06].
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• (Ȳ k,n) is uniformly bounded in S∞ (i.e., the bounds are independent of n)
with

0 ≤ sup
n
Ȳ k,n ≤ k.

Hence, we can define the process Ȳ k as follows

Ȳ k = lim↗k Ȳ
k,n.

Using standard computations (these are similar than those in the proof of
Lemma 3), we obtain that the two sequences (Z̄k,n) and (Ūk,n) are bounded
respectively in L2(W ) and in L2(Ñp) and we denote by Z̄k and by Ūk their
respective weak limits.
To prove the strong convergence of both (Z̄k,n) and (Ūk,n), we follow the
same procedure as in Appendix A2. This consists in applying Itô’s formula
to |Ȳ k,n

· − Ȳ k,m
· |2 and in relying on the following estimate

|Ȳ k,n
· − Ȳ k,m

· |S∞ ≤ |ξn − ξm|∞.

To justify this last claim, we proceed as in Appendix A1: using that, for any
k, the generator f̃k satisfies the same kind of assumption as f̃ , that is (H

′
2)

and following the same method as described in Appendix A1, we prove that
Ȳ k,n
· − Ȳ k,m

· is a bounded Q-submartingale with terminal condition equal to
ξn − ξm (for a well chosen equivalent measure Q).
As a consequence, to rewrite the proof given in Appendix A2, we only need
to check the sufficient condition

∃M, sup
n,m≥M

|ξn − ξm|S∞ ≤ inf{ 1

32α
,

1

16C
}. (21)

(This condition is obtained for a constant C depending only on the parame-
ters of the BSDE). Since (ξn) converges in L∞(FT ), it is a Cauchy sequence
and, provided we take M large enough, condition (21) is ensured. Hence,
there exists a triple (Ȳ k, Z̄k, Ūk) such that (20) holds and solving the BSDE
with parameters f̃k and terminal condition ξk such that: ξk = sup

n
ξn,k.

Step 3: conclusion We first define Y , Z and U as follows

Yt = Ȳ k
t 1t≤τk , Zt = Z̄k

t 1t≤τk and Ut = Ūk
t 1t≤τk .

and to ensure the consistency of this definition, we need to check

Ȳ k ≡ Ȳ k+1 on [0, τ k]. (22)
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For this, we claim that, for each n and each k, the solution (Ȳ n,k, Z̄n,k, Ūn,k)
of the BSDE with parameters (f̃k, Bn) is unique12. Using then that the gen-
erators f̃k and f̃k+1 coincide on [0, τ k], we necessarily have: Ȳ k,n ≡ Ȳ k+1,n

on [0, τ k] and (22) results from the fact that Ȳ k and Ȳ k+1 are the increasing
and almost sure limits of (Ȳ n,k) and (Ȳ n,k+1).
Furthermore, since B satisfies the property given by (17), the sequence (τ k)
is stationnary (almost surely): this means that, for almost ω, there exists
k(ω) such that τ k(ω) = T and hence: ξk(ω) = B. As a consequence, the
triple (Y, Z, U) solves the BSDE with parameters (f̃ , B).

To conclude, we rely on the result of the Section 3: i.e, the existence of
solutions of the BSDE with parameters f and B̄, for any random variable B̄
defined in terms of B as follows

B̄ = B −
∫ T

0

f(s,−θs
α
, 0)ds−

∫ T

0

θs
α
dWs. (23)

(this expression is given in the last step in section 3). In general, when B
is bounded, the random variable B̄ is no more bounded but it only satisfies
(17). To obtain the desired existence result, we fix an arbitrary bounded
random variable B̄ and we define B in terms of B̄ using (23). Such a random
variable B satisfies the property (17) and hence, using the existence result
established in this section, we obtain a solution (Y, Z, U) of the BSDE with
parameters (f̃ , B). Defining then (Ȳ , Z̄, Ū) as follows

Ȳs =
(
Ys −

∫ s

0

f(u,−θu
α
, 0)du−

∫ s

0

θu
α
dWu

)
, Z̄s = Zs −

θs
α

and Ūs = Us,

this triplet solves the BSDE with parameters (f , B̄). Since B̄ is a bounded
random variable and since f satisfies (H1), Lemma 3 entails that Ȳ is in S∞,
which achieves the proof of (ii) in Theorem 1.

5 Application to the utility maximization pro-

blem

In this section, we make use of the notations introduced in Section 2 and
using the results of the two previous sections, we provide a characterization
of the value process at time 0

V (x) = sup
π∈A

E(Uα(Xπ
T − B̄)),

12This uniqueness result follows from the comparison result stated in Lemma 5.
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which is associated to the classical utility maximization problem with bounded
liability B̄. We now state the main result of this section.

Theorem 2 The expression of the value process at time 0 is given by

V (x) = − exp(−α(x− Ȳ0)), (24)

where Ȳ0 represents the initial data of the solution (Ȳ , Z̄, Ū) to the BSDE
(2) given by the parameters (f , B̄) with the generator f defined as follows

f(s, z, u) = inf
π∈C

(
α

2
|πσs − (z +

θ

α
)|2 + |u− πβs|α

)
− θz − |θ|

2

2α
.

Moreover, there exists an optimal and admissible strategy π∗, such that: π∗ ∈
A. Such a strategy satisfies E(Uα(Xπ∗

T − B̄)) = V (x), and it is characterized
by

π∗s(ω) ∈ argmin
π∈C

(α
2
|πσs − (Zs +

θs
α

)|2 + |Us − πβs|α
)
, P-a.s. and for all s(25)

Since it relies on the same procedure as in [MOR08], we give here a brief
proof with the main arguments.

Proof of theorem 2

We first denote by (Ȳ , Z̄, Ū) the solution in S∞×L2(W )×L2(Ñp) of the
BSDE given by (f , B̄) whose existence has been obtained in the previous
sections and, for any admissible π, we define Rπ as follows

∀ t, Rπ
t = −e−αXπ

t eαȲt . (26)

In a first step and to obtain the expression (24), we prove the supermartingale
property of Rπ, which holds for any admissible strategy π (π ∈ A). Using
standard computations derived from the Itô’s formula, Rπ has the following
product form

Rπ
t = Rπ

0M̃
π
t e

Aπt ,

with the process M̃ such that

M̃t = Et(M) = Et
(

(−α(πσ − Z) ·W ) + (e(−α(πβ−U)) − 1) · Ñp)
)
,
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and with Mπ and Aπ defined by: Mπ = (−α(πσ − Z) ·W ) + (e(−α(πβ−U)) −
1) · Ñp, and by

Aπt =

∫ t

0

α
(
−πsbs − f(s, Zs, Us) +

α

2
|πsσs − Zs|2 + |Us − πsβs|α

)
ds.

Since M̃π is a non negative stochastic exponential, it is a local martin-
gale for any π, and consequently, there exists a sequence of stopping times
(τn) converging to T such that M̃π

.∧τn is a martingale. By definition of the
generator f , exp(Aπ) is non decreasing and since R0 is non positive, Rπ

·∧τn

satisfies
∀A ∈ Fs, E(Rπ

t∧τn1A) ≤ E(Rπ
s∧τn1A), (27)

Using the definition (26) of Rπ, the uniform integrability of (Rπ
.∧τn)n results

both from the uniform integrability of e−αX
π

(proved in Lemma 1) and the
boundedness of Ȳ . Hence, passing to the limit as n goes to ∞ in (27), it
implies that, for all A ∈ Fs, E(Rπ

t 1A) ≤ E(Rπ
s1A), which yields the super-

martingale property of Rπ.

To complete the proof of this theorem and justify the expression (24) for
V , we first prove the optimality of any strategy π∗ satisfying (25). From this
last characterization of π∗, we obtain: Aπ

∗ ≡ 0 and this entails that Rπ∗ such
that: Rπ∗ = Rπ∗

0 M̃
π∗ , is a local martingale. By its definition, π∗ takes its

value in C and hence, thanks to Lemma 1, π∗ is in A, which entails that Rπ∗

is a true martingale. From this last martingale property, we get

sup
π∈C

E(Rπ
T ) = E(Rπ∗

T ) = R0 = − exp
(
− α(x− Ȳ0)

)
,

which gives the expression (24) for V .

�

6 Conclusion

In this paper, we consider the utility maximization problem with an addi-
tional liability and under portfolio constraints. This is done in the context of
a discontinuous filtration and it is based on the same methodology than in
[HIM05]: this consists in relying both on the dynamic programming principle
and on BSDEs techniques to obtain the expression of the value process in
terms of the solution of a quadratic BSDE with jumps. However, since we re-
lax the finiteness assumption of the Levy measure, this study is an extension
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of the results already obtained in [MOR08]: under this additional restriction,
we establish a new existence result, which is the main achievement of this
paper. Then and as in [MOR08], this theoretical study allows to charac-
terize explicitely and dynamically the value process associated to the utility
maximization problem and also to prove existence of optimal strategies.
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7 Appendix

7.1 A1: Proof of the estimates (9) and (13)

Our aim here is to justify that, for any solution of the BSDE with parameters
(fk,m, B

N
), we have

|Y k,m
s |S∞ ≤

|B|∞
N

, P-a.s. and for all s.

The cases when k = 1 and k = 2 corresponds to the inequalities (9) and (13)
already stated in section 3.3.1 and 3.3.2 and of great use in the proof of the
two stability results in Appendix A2 and A3.

In this paragraph, we only consider the case when k = 1 (in fact, the
general case is based on the same procedure, provided we check that for all
k and m, the increments of the generator fk,m satisfy analogous controls as
those which are stated in (H2) in Section 3.1 for f or in Section 4 for f̃ .)

Now and in a first step, we proceed with the proof of the upper bound for
Y 1,m and, for this, we make use of a standard linearization procedure which
we are going to describe. Firstly, for any z, z

′
in R, u, u

′
in
(
L2 ∩ L∞

)(
n
)
,

we check

f 1,m(s, z, u)− f 1,m(s, z
′
, u
′
) = fm(s, z − θ

α
, u)− fm(s, z

′ − θ

α
, u
′
),

and therefore, we only need to consider the increments of the function f̃m

defined by: f̃m : (s, z, u)→ fm(s, z− θ
α
, u). Concerning the increments w.r.t.

u, the upper bound given in (H2) in Section 3.1 holds again (with the same
process γ). For the increments w.r.t. z, we rewrite fm as follows

fm(s, z, u) = inf
π∈C

(
Φ(z, π)ρm(z) +

∫
R∗
gmα (u− πβ)n(dx)

)
,

with the function Φ which is defined by: Φ(z) = Φ(z, π) = α
2
|πσ − (z + θ

α
)|2

and is a continuously differentiable function whose differential has linear
growth w.r.t. z. We also rely on

inf
π∈C

F (π, z, u)− inf
π∈C

F (π, z
′
, u) ≤ sup

π∈C
|F (π, z, u)− F (π, z

′
, u)|,

and we then use an explicit upper bound for the increments of: z → Φ(z)ρm(z)
to obtain

|fm(s, z − θs
α
, u)− fm(s, z

′ − θ

α
, u)| ≤ (28)
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| sup
π∈C

(
sup
λ∈[0,1]

Φ
′
(zλ)ρm(zλ) + Φ(zλ)

(
ρm
)′

(zλ)

)
|z − z′ |,(

with: zλ = λ(z − θs
α

) + (1− λ)
(
z
′ − θ

α

))
. Using then that (ρm)

′
is equal to

zero except on [m,m + 1] (where it is bounded since continuous) and the
increasing property of Φ (on [m,m+ 1]), we get

∃ C > 0, ∀ λ ∈ [0, 1], |Φ(zλ)
(
ρm
)′

(zλ)| ≤ CΦ(m+ 1).

Due to the assumptions on the parameters and the compactness of C, the
term in the right-hand side is a bounded process (we denote by Cm an upper
bound). Relying now on the linear growth of Φ

′
, straightforward computa-

tions leads to

|fm(s, z − θs
α
, u)− fm(s, z

′ − θ
α
, u)|

≤

(
Cm + sup

λ∈[0,1]

Φ
′
(zλ)ρm(zλ)

)
|z − z′|,

≤ C
(
κm + |z|+ |z′ |

)
|z − z′ |,

with κm in BMO(W ) and depending only on the parameters α, θ and on m.
Defining λm the same way as in Section 3.1 as follows

λms (z, z
′
) :=

fm(s,z− θ
α
,u)−fm(s,z

′− θ
α
,u)

z−z′ , if z − z′ 6= 0,

λms (z, z
′
) := 0, otherwise,

the process λm(Z,Z
′
) is in BMO(W ) as soon as both the two processes Z

and Z
′

have this property. Now and for sake of clarity, we denote by M1,m

instead of Z1,m ·W + U1,m · Ñp the martingale part of Y 1,m. Relying on the
relation: f 1,m(s, 0, 0) ≡ 0, we apply the Itô formula to Y 1,m between t and τ
(τ being an arbitrary stopping time such that: t ≤ τ ≤ T )

Y 1,m
t − Y 1,m

τ =∫ τ

t

(
f 1,m(s, Z1,m

s , U1,m
s )− f 1,m(s, 0, 0)

)
ds−

(
M1,m

τ −M1,m
t

)
=

∫ τ

t

(
fm(s, Z1,m

s − θs
α
, U1,m

s )− fm(s,−θs
α
, 0)
)
ds−

(
M1,m

τ −M1,m
t

)
and we then use the following upper bound

fm(s, Z1,m
s −

θs
α
, U1,m

s )−fm(s,−θs
α
, 0) ≤ Z1,m

s λms (Z1,m
s , 0)+

∫
R\{0}

U1,m
s (x)γs(U

1,m
s (x), 0)n(dx)
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Defining the measure Qm by setting: dQm
dP := ET (λm(Z1,m

s , 0) ·W + γ · Ñp),

Girsanov’s theorem yields that W λm := W − 〈λm ·W,W 〉 and Ñγ(ds, dx) =

Ñp(ds, dx)−
∫

R\{0}
γs(U

1,m
s (x), 0)n(dx)ds are local martingale under Qm and

Y 1,m is the sum of a local martingale and an increasing process. Using a
standard localization procedure, there exists a sequence (τn,m) converging to
T , as n goes to ∞ and such that

Y 1,m
t ≤ EQm

(
Y 1,m
τn,m|Ft

)
,

and inequality (9) follows from the application of the bounded convergence

theorem to (EQm
(
Ỹτn,m|Ft

)
)n and the almost sure convergence of Ỹτn,m to

B
N
, resulting from the fact that (τn,m)n becomes stationnary, P-a.s.

To obtain the lower bound, i.e. Y 1,m ≥ − |B|∞
N

, we apply the same proce-
dure to Ȳ 1,m = −Y 1,m: in this case, this consists in linearizing the increments
of

−f 1,m(s, Z1,m
s , U1,m

s ) = −f 1,m(s, Z1,m
s , U1,m

s )− (−f 1,m(s, 0, 0)).

Hence, provided we replace λm(Z1,m, 0) by λm(0, Z1,m) and γ(U1,m, 0) by
γ(0, U1,m), we obtain the same controls as in (H2) and rewritting identically

the previous proof, it entails: −Y 1,m
s ≤ |B|∞

N
, P-a.s. and for all s, which

achieves the proof of (9).

�

7.2 A2: Omitted proof of the first stability result

We prove here the strong convergence of (Z1,m) and (U1,m) skipped in Section
3.3.1 and which is the essential ingredient in the proof of the stability result
in lemma 4. In all that proof, C stands for an arbitrary constant which
may vary from line to line and depends only on the parameters |B|∞ and
α. The proof of this result relies on the same methods and computations as
in [KOB00] but, contrary to the aforementionned paper, we work here in a
discontinuous setting, which brings additionnal difficulties.
(Y 1,m) being increasing, then, for any pair m, p, such that p ≤ m, Y 1,(m,p) :=
Y 1,m−Y 1,p is non negative and bounded by |2B

N
|L∞ ≤ 2MB

N
(this results from

Appendix A1). Using assertion (i)(b) in Lemma 3, we deduce

|U1,m,p
s |L∞(n) ≤ 4

MB

N
, P-a.s. and for all s.

and applying then Itô’s formula to the process |Y 1,(m,p)|2, it yields
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E
(
|Y 1,(m,p)

0 |2
)
− E

(
|Y 1,(m,p)
T |2

)
=

+ E
(∫ T

0

2Y 1,(m,p)
s

(
f 1,m(s, Z1,m

s , U1,m
s )− f 1,p(s, Z1,p

s , U1,p
s )
)
ds

)

− E
(∫ T

0

|Z1, (m,p)
s |2ds

)
− E

(∫ T

0

∫
R∗
|U1,(m,p)

s (x)|2n(dx)ds

)
. (∗)

We then need to give an upper bound to the following difference

Fm, p = f 1,m(s, Z1,m
s , U1,m

s )− f 1,p(s, Z1,p
s , U1,p

s )
= fm(s, Z1,m

s − θs
α
, U1,m

s )− fp(s, Z1,p
s − θs

α
, U1,p

s ).

Since both fm and fp satisfy (H1), we have

fm(s, Z1,m
s − θs

α
, U1,m

s ) ≤ α

2
|Z1,m

s − θs
α
|2 + |U1,m

s |α,

and we rely on the classical inequality: ab ≤ 1
2
(a2 + b2), to obtain

∃ Ĉ ∈ L1(ds⊗ dP), −fp(s, Z1,p
s −

θs
α
, U1,p

s ) ≤ Ĉs +
α

4
|Z1,p

s −
θs
α
|2.

with : Ĉ = |θ|2
α

. Then, we use the convexity of z → |z|2 and | · |α to write,
on the one hand,

α
2
|Z1,m

s − θs
α
|2≤ α

2
(|1

3
(3Z

1,(m,p)
s + 3(Z1,p

s − Z̃s) + 3(Z̃s − θs
α

)|2)

≤ 3α
2

(|Z1,(m,p)
s |2 + |Z1,p

s − Z̃s|2 + |Z̃s − θs
α
|2),

and similarly

α

4
|Z1,p

s −
θs
α
|2 ≤ α

2

(
|Z1,p

s − Z̃s|2 + |Z̃s −
θs
α
|2
)
,

and, on the other hand

|U1,m
s |α = |(3U

1,(m,p)
s

3
+ 3(U1,p

s −Ũs)
3

+ 3Ũs
3

)|α,

≤ |U1,(m,p)
s |3α + |U1,p

s − Ũs|3α + |Ũs|3α,

≤ C
(
|U1,(m,p)

s |2L2(n) + |U1,p
s − Ũs|2L2(n) + |Ũs|2L2(n)

)
.
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To get the first inequality, we use: |u|3α = 1
3
|3u|α, and to obtain the constant

C appearing in the second inequality, we rely on the relation (7) obtained
in section 3.2. Taking into account all these majorations and putting in the
left-hand side all terms containing either Z1,(m, p) or U1,(m, p), we rewrite Itô’s
formula given by (*) as follows

E(|Y 1,(m,p)
0 |2)) + E

∫ T

0

(
1− 4αY 1,(m,p)

s

)
|Z1,(m,p)

s |2ds

+ E
∫ T

0

(
1− 2CY 1,(m,p)

s

)
|U1,(m,p)

s |2L2(n)ds

≤ E
(∫ T

0

2Y 1,(m,p)
s Ĉs + 4αY 1,(m,p)

s

(
|Z1,p

s − Z̃s|2 + |Z̃s −
θs
α
|2
)
ds

)

+ E
(∫ T

0

2CY 1,(m,p)
s

(
|U1,p

s − Ũs|2L2(n) + |Ũs|2L2(n)

)
ds

)
.

To justify the passage to the limit in each terms of the right-hand side, as
m goes to +∞, p being fixed, we apply Lebesgue’s theorem and, for this, we
argue

• Y 1,(m,p)
s →

(
Ỹs− Y 1,p

s

)
, P-a.s. and for all s, as m goes to +∞ (p fixed),

• the processes |Z1,p|2, |U1,p(·)|2L2(n), |Z̃−
θ
α
|2 and |Ũ(·)|2L2(n) are in L1(ds⊗

dP).

Focusing our attention on the passage to the limit inf, as m goes to ∞ (p
being always fixed), we use the a priori estimate

∀ m ≥ p, 0 ≤ Y 1,(m,p)
s ≤ 2

MB

N
, P-a.s. and for all s,

and we provide sufficient conditions so that the following terms

and


(
1− 4αY

1,(m,p)
s ).(

1− 2CY
1,(m,p)
s

)
.
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are (almost surely) strictly positive. This holds as soon as

(1− 16α
MB

N
) ≥ 1

2
and (1− 8C

MB

N
) ≥ 1

2
,

which provides a constraint condition on N denoted by (10): under this
condition, the two last terms in the left-hand side of Itô’s formula are positive
and we obtain

lim inf
m→∞

E
∫ T

0

(1− 4αY 1,(m,p)
s )|Z1,(m,p)

s |2ds

≥ E
(∫ T

0

(1− 4α(Ỹs − Y 1,p
s ))|Z̃s − Z1,p

s |2ds
)
,

and also

lim inf
m→∞

E
∫ T

0

(
1− 4CY 1,(m,p)

s

)
|U1,(m,p)

s |2L2(n)ds

≥ E
(∫ T

0

(
1− 4C(Ỹs − Y 1,p

s )
)
|Ũs − U1,p

s |2L2(n)ds

)
.

Rewritting again Itô’s formula

E
(
φ(Ỹ0 − Y 1,p

0

)
+ E

(∫ T

0

(
1− 4α(Ỹs − Y 1,p

s )
)
|Z̃s − Z1,p

s |2ds
)

+ E
(∫ T

0

(
1− 2C(Ỹs − Y 1,p

s )
)
|Ũs − U1,p

s |2L2(n)ds

)

≤ E
(∫ T

0

2(Ỹs − Y 1,p
s )Ĉs + 4α(Ỹs − Y 1,p

s )
(
|Z1,p

s − Z̃s|2 + |Z̃s −
θs
α
|2
)
ds

)

+ E
(∫ T

0

2(Ỹs − Y 1,p
s )C

(
|U1,p

s − Ũs|2L2(n) + |Ũs|2L2(n)

)
ds

)
.

To proceed with a second passage to the limit (as p goes to ∞), we transfer
into the left-hand side of the previous and last inequality all terms containing
either |Z1,p

· −Z̃·|2 or |U1,p
· −Ũ·|2L2 , relying again on the condition (10) to justify

the passage to the limit. For the right-hand side, the use of Lebesgue’s
theorem is justified arguing that

33



• the processes Ĉ, |Z̃ − θ
α
|2 and |Ũ |2 are in L1(ds⊗ dP),

• Y 1,p
s → Ỹs, P-a.s and for all s.

Taking the limit sup over p in the left-hand side of Itô’s formula, it leads to

lim
p→∞

sup
1

2

(
E
∫ T

0

|Z̃s − Z1,p
s |2ds+ E

∫ T

0

|Ũs − U1,p
s |2L2(n)ds

)
≤ 0,

the last inequality being an equality, this ends the proof.

�

7.3 A3: Omitted proof in Section 3.3.2 (the second
stability result)

As in the second Appendix, we prove the strong convergence of (Z2,m) and
(U2,m) (skipped in section 3.3.2): however, in that case, there is an additional
difficulty, since the sequence (f 2,m) is neither increasing nor decreasing. As
before and for any (m, p), we define Y 2,(m,p) by: Y 2,(m,p) := Y 2,m − Y 2,p and
similarly Z2,(m,p) and U2,(m,p). We then apply Itô’s formula to |Y 2,(m,p)|2 be-
tween 0 and T and we take the expectation to obtain

E(|Y 2,(m,p)
0 |2) + E

(∫ T

0

|Z2,(m,p)
s |2ds

)
+ E

(∫ T

0

∫
R∗
|U2,(m,p)

s (x)|2n(dx)ds

)

≤ E
(∫ T

0

2|Y 2,(m,p)
s ||f 2,m(s, Z2,m

s , U2,m
s )− f 2,p(s, Z2,p

s , U2,p
s )|ds

)
.

(29)
We then give an upper bound of the following quantity

Fm, p = |f 2,m(s, Z2,m
s , U2,m

s )− f 2,p(s, Z2,p
s , U2,p

s )|,

≤ |fm(s, Z2,m
s + Z1,m

s − θs
α
, U2,m

s + U1,m
s )|

+ |fp(s, Z2,p
s + Z1,p

s − θs
α
, U2,p

s + U1,p
s )|

+ |fm(s, Z1,m
s − θs

α
, U1,m

s )|+ |fp(s, Z1,p
s − θs

α
, U1,p

s )|.

Relying again on the assumption (H1) satisfied by any fm (with parameters
independent of m or of p), we claim, using the estimates of lemma 3, that
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both processes Z1,m and Z1,p (respectively U1,m and U1,p) are bounded inde-
pendently (of m and p) in L2(W ) (respectively in L2(Ñp)). Now, to justify
the existence of an integrable random variable G (i.e. G in L1(ds⊗dP) which
dominates

|fm(s, Z1,m
s − θs

α
, U1,m

s )|+ |fp(s, Z1,p
s −

θs
α
, U1,p

s )|,

we refer to the following result (already stated in lemma 2.5, page 569 in
[KOB00])

Lemma 8 If (Zm)m is a sequence of processes on [0, T ] such that

∃M > 0, sup
m

E
∫ T

0

|Zm
s |2ds ≤M,

then, there exists a subsequence (mj) such that it satisfies

sup
m∈(mj)

|Zm|2 ∈ L1(ds⊗ dP).

Considering appropriate subsequences of (|Z1,m|2) and of (|U1,m|2), we can
assume w.l.o.g.

sup
m
|Z1,m|2 ∈ L1(ds⊗ dP) and sup

m
|U1,m|2L2(n) ∈ L1(ds⊗ dP)

. Besides, since |θ|
2

α
is in L1(ds⊗dP)) (θ is bounded), we obtain the existence

of a random variable G in L1(ds⊗ dP) such that

|fm(s, Z1,m
s − θs

α
, U1,m

s )|+ |fp(s, Z1,p
s −

θs
α
, U1,p

s )| ≤ G.

We now use the convexity of both z → |z|2 and |·|α to obtain, on the one hand

α
2
|Z2,m

s + Z1,m
s − θs

α
|2 ≤ 3α

2
(|Z2,(m,p)

s |2 + |Z2,p
s − Z̃2

s |2 + |Z̃2,s + Z1,m
s − θs

α
|2),

and, on the other hand,

|U2,m
s + U1,m

s |α ≤ |U
2,(m,p)
s |3α + |U2,p

s − Ũ2
s |3α + |Ũ2

s + U1,m
s |3α

≤ C
(
|U2,(m,p)

s |2L2 + |U2,p
s − Ũ2

s |2L2 + |Ũ2
s + U1,m

s |2L2

)
.

35



(In the last inequality, the existence of the constant C results directly from
the relation (7) and using that the two processes U1,m

s and U2,m
s are in (L2 ∩

L∞)(n), P-a.s. and for all s).
Similarly, we obtain

and


α
2
|Z2,p

s + Z1,p
s − θs

α
|2 ≤ α

(
|Z2,p

s − Z̃2
s |2 + |Z̃2

s + Z1,p
s − θs

α
|2
)

|U2,p
s + U1,p

s |α ≤ C
(
|U2,p

s − Ũ2
s |2L2 + |Ũ2

s + U1,p
s |2L2

)
,

which entails

Fm, p ≤ G+ 3α
2
|Z2,(m,p)

s |2 + 5α
2

(|Z2,p
s − Z̃2

s |2 + |Z̃2
s + Z1,m

s − θs
α
|2)

+ C|U2,(m,p)
s |2L2 + 2C

(
|U2,p

s − Ũ2
s |2L2 + |Ũ2

s + U1,m
s |2L2

)
.

To conclude, we proceed analogously to the proof given in Appendix A1 and
we just give below the main steps: writing again Itô’s formula given by (29)

by putting in the left-hand side all the terms containing either |Z2,(m,p)
s |2 or

|U2,(m,p)
s |2L2 , it gives

E(|Y 2,(m,p)
0 |2) + E

(∫ T

0

(
1− 3αY 2,(m,p)

s

)
|Z2,(m,p)

s |2ds
)

+ E
(∫ T

0

∫
R∗

(
1− 2CY 2,(m,p)

s

)
|U2,(m,p)

s |2(x)n(dx)ds

)

≤ E
(∫ T

0

5αY 2,(m,p)
s (|Z2,p

s − Z̃2
s |2 + |Z̃2

s + Z1,m
s − θs

α
|2)ds

)

+E
(∫ T

0

2CY 2,(m,p)
s

(
|U2,p

s − Ũ2
s |2L2 + |Ũ2

s + U1,m
s |2L2

)
ds

)
.

To achieve the strong convergence of both (Z2,m) and (U2,m), it remains to
justify tweo successive passge to the limit: i.e, a first time when m goes to
+∞, p being fixed, and a second one when p goes to +∞. As in the first
appendix and to ensure the assumption of positiveness of both these two
processes (this for any pair m, p)(

1− 8αY 2,(m,p)
s

)
and

(
1− 4CY 2,(m,p)

s

)
,

we also impose the following constraint condition

(1− 16α
MB

N (2)
) ≥ 1

2
and (1− 12C

MB

N (2)
) ≥ 1

2
,
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or equivalently
MB

N (2)
= inf{ 1

32α
,

1

24C
}. (30)

Provided these two conditions hold, the same procedure as for the first sta-
bility result in Appendix A2 can be rewritten and leads to

lim
m→∞

sup E
(∫ T

0

|Z2,m
s − Z̃2

s |2ds+

∫ T

0

|U2,p
s − Ũ2

s |2L2ds

)
= 0.

To conclude, we justify that this proof can be rewritten identically at
each step k, k ≥ 2, to obtain the strong convergence of (Zk,m) and (Uk,m).
In fact, to show this, we argue that, for any solution (Y k,m, Zk,m, Uk,m) of

the BSDE given by (fk,m, B
N

), Y k,m satisfies: |Y k,m|S∞ ≤ |B|∞
N
. (this estimate

can be justified by the same argumentation as in Appendix A1). Besides,
if we replace (Z1,m) and (U1,m) respectively by (Z̄k−1,m) and (Ūk−1,m) in
the previous proof and using that these two aforementionned sequences are
uniformly bounded in L2(W ) and in L2(Ñp), the same procedure holds and
implies the strong convergence of the sequences (Zk,m) and (Uk,m) provided
the condition (30) is satisfied.
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