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Abstract In this paper,1 we study a class of quadratic Backward Stochastic Differ-

ential Equations (BSDEs) which arises naturally in the utility maximization problem

with portfolio constraints. We first establish existence and uniqueness of solutions for

such BSDEs and we then give applications to the utility maximization problem. Three

cases of utility functions: the exponential, power and logarithmic ones, will be discussed.
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1 Introduction

In this paper, the problem under consideration consists in maximizing the expected

utility of the terminal value of a portfolio under constraints. The main objective is

to give the expression of the value process of the utility maximization problem with

utility function U and liability B, whose expression at time t is

V Bt (x) = ess sup
ν∈At

EFt(U(Xν,t,x
T −B)). (1.1)

In our model, Xν,t,x
T is the terminal value of the wealth process associated with the

strategy ν and equal to x at time t and the essential supremum is taken over all trading

strategies ν, which are defined on [t, T ] and take their values in an admissibility set

denoted by At. Since not any FT -measurable random variable B is replicable by a

strategy taking its values in At, the financial market is incomplete. This problem

provides further interests due to its connection with utility indifference valuation: in
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fact, the utility indifference price relates the two value processes V B and V 0. Introduced

by Hodges and Neuberger (1989), the utility indifference selling price stands for the

amount of money which makes the agent indifferent between selling or not selling the

claim B.

Among previous studies of our problem, we refer to [2] and [18]. In the first, Becherer

studies both the utility maximization problem and the notion of utility indifference va-

luation in a discontinuous setting, whereas, in the second paper, Mania and Schweizer

consider the same problem in a continuous framework. As in these two papers and to

solve the problem (1.1) in the case of non convex trading constraints, we rely on the

dynamic programming methodology and on non linear BSDE theory. In the existing

literature (see e.g. [3], [19] or [24]), the convex duality method is widely used to study

the unconditional case of the problem, but in the aforementioned papers, the authors

either suppose there is no constraints or they assume the convexity of the constraint

set, which is an assumption we relax here. We rather use the first method to handle

dynamically the problem and, for this approach, some major references are [12] and

[18]. Our contribution consists in extending the dynamic method in a general conti-

nuous setting and in presence of constraints. This requires to establish existence and

uniqueness results for solutions to specific quadratic BSDEs and then use these results

to characterize both the value process expressed at time t in (1.1) and the strategies

attaining the supremum in this last expression.

The paper is structured as follows: Section 2 lays out the financial background and gives

some preliminary tools and results about BSDEs. Then, the dynamic programming

method is applied to derive an explicit BSDE. Section 3 investigates the existence and

uniqueness results for solutions to the introduced BSDEs. In Section 4, applications

to finance are developed and the expression of the value process is provided for three

types of utility functions. Lengthy proofs are relegated to an appendix.

2 Statement of the problem and main results

2.1 The model and preliminaries

As usual, we consider (Ω, F, P) a probability space equipped with a right-continuous

and complete filtration F = (Ft)t and with a continuous d-dimensional local martingale

M . Throughout this paper, all processes are considered on [0, T ], T being a determinis-

tic time and we denote by Z ·M the stochastic integral of Z w.r.t. M . We also assume

that F = (Ft)t∈[0,T ] is a continuous filtration: this means that any R-valued (square

integrable) F-martingale K is continuous and can be written

K = Z ·M + L,

with Z a predictable Rd-valued process and L a (square integrable) R-valued mar-

tingale strongly orthogonal to M (i.e., for each i, 〈M i, L〉 = 0). For a given square

integrable martingale M , the notation 〈M〉 stands for the quadratic variation process

and the notation | · |∞ stands for the norm in L∞(FT ) of any bounded FT - measurable

random variable.

From the Galchouk-Kunita-Watanabe inequality, it follows that each component

d〈M i,Mj〉 (i, j ∈ {1, · · · , d}) is absolutely continuous with respect to dC̃ = (
P
i d〈M

i〉).
Hence, there exists an increasing and bounded process C (for instance, we set: Ct =
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arctan(C̃t), for all t) such that 〈M〉 can be written

d〈M〉s = msm
′

sdCs,

where m is a predictable process taking its values in Rd×d (this expression has been

used in [8] in an analogous continuous framework). The notation m
′

stands for the

transposed matrix and we also assume that, for any s, the matrix msm
′
s is invertible,

P-a.s.

The financial background To bring further motivations, we explain the financial

context and, for this, we provide here all the definitions and common assumptions.

We consider a financial market consisting in d+ 1 assets: one risk free asset with zero

interest rate and d risky assets. We model the price process S of the d risky assets as

a process satisfying 2

dSs
Ss

= dMs + dAs, with: ∀ j ∈ {1, · · · , d}, dAjs =

dX
i=1

λisd〈Mj ,M i〉s, (2.1)

(〈Mj ,M i〉)j standing for the ith column of the Rd×d matrix-valued process 〈M〉 and

λ a Rd-valued process satisfying

(Hλ) ∃ aλ > 0,

Z T

0
λ
′

sd〈M〉sλs =

Z T

0
|msλs|2dCs ≤ aλ, P-a.s. (2.2)

This definition is stronger than the usual structure condition, which only states:Z T

0
λ
′

sd〈M〉sλs <∞, P-a.s. (we refer to [1] or [11] for this condition) and, in particular,

it implies that E(−λ ·M) is a strict martingale density for the price process S. In the

financial application, we rely on (Hλ) to use the precise a priori estimates given in

Lemma 3.1 in Section 3. We now state the definition of wealth process Xν and of the

associated self-financing and constrained trading strategy ν.

Definition 2.1 A predictable Rd-valued process ν = (νs)s∈[t,T ] is called a self-financing

trading strategy if it satisfies

1 νs ∈ C, P-a.s. and for all s, C being the constraint set (closed and not necessarily

convex set in Rd).

2 The wealth process Xν = Xν,t,x of an agent with strategy ν and wealth x at time

t is defined as follows

∀s ∈ [t, T ] , Xν
s = x+

Z s

t

dX
i=1

νir
Sir
dSir, (2.3)

and it is in the space H2 of semimartingales.

2 Both this decomposition already introduced in [7] and the assumption of almost sure
inversibility of ms for all s, ensure that the no arbitrage property holds.
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In this definition, each component νi of the trading strategy corresponds to the

amount of money invested in the ith asset. Due to the presence of portfolio constraints,

there does not necessarily exist a strategy ν (such that, for all s, νs ∈ C) satisfying:

Xν
T = B, for a given FT -contingent claim B. Hence, we are facing an incomplete

market. The utility maximization problem aims at giving the expression of the value

process defined at any time t by (1.1) and at characterizing the set of optimal strategies,

i.e. those achieving the esssup for the problem. In this study, we first consider the

exponential utility maximization problem associated with the utility function: Uα(x) =

− exp (−αx), with: α > 0. Usually, the set of admissible trading strategies consists of

all the strategies such that the wealth process is bounded from below. To solve the

problem analogously to [12], we need to enlarge the set of admissible strategies to a

new set denoted by At.

Definition 2.2 Let C be the constraint set, which is such that: 0 ∈ C. The set At of

admissible strategies consists of all d-dimensional predictable processes: ν = (νs)s∈[t,T ]

satisfying: νs ∈ C, P-a.s. and for all s, E(

Z T

t
|msνs|2dCs) < ∞ and the uniform inte-

grability of the family

{exp(−αXν
τ ) : τ F-stopping time taking its values in [t, T ]}.

This appears to be a restrictive condition on strategies and it implies that we have to

justify the existence of one optimal strategy admissible in this sense.

Preliminaries on quadratic BSDEs We first provide the form of the one-dimensional

BSDEs considered in the sequel

(Eq1) Yt = B +

Z T

t
F (s, Ys, Zs)dCs +

β

2
(〈L〉T − 〈L〉t)−

Z T

t
ZsdMs −

Z T

t
dLs.

To refer to this BSDE, we use the notation BSDE(F, β,B). Usually, a BSDE is cha-

racterized by two parameters: its terminal condition B assumed here to be bounded,

its generator F = F (s, y, z), a P×B(R)×B(Rd)-measurable function, continuous w.r.t.

(y, z) (P denotes the σ-field of all predictable sets of [0, T ] × Ω and B(R) the Borel

field of R). In our setting, we introduce another parameter β which is assumed to be

constant and a financial meaning for β is given in next paragraph. We also impose

precise growth conditions on the generator: in particular, we study existence under the

assumption of quadratic growth w.r.t. z. One essential motivation of this study is that

such quadratic BSDEs 3 appear naturally when using the same dynamic method as in

[12] to solve the problem (1.1). A solution of the BSDE(F, β,B) is a triplet (Y,Z, L)

with 〈L,M〉 = 0 and such that:

Z T

0
|F (s, Ys, Zs)|dCs < ∞, P-a.s., satisfying (Eq1)

and defined on S∞ × L2(d〈M〉 ⊗ dP) ×M2([0, T ]): S∞ consists of all bounded con-

tinuous processes, L2(d〈M〉 ⊗ dP) consists of all predictable processes Z such that:

E
` Z T

0
|msZs|2dCs

´
<∞, andM2([0, T ]) consists of all real square integrable martin-

gales of the filtration F .

3 Such BSDEs have been considered in [18], where the authors already deal with the utility
maximization problem but, contrary to the present paper, they do not assume the presence of
trading constraints.
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The stochastic exponential of a semimartingale K denoted by E(K) is the unique

process satisfying

Et(K) = 1 +

Z t

0
Es(K)dKs.

A process L is a BMO martingale if L is an F-martingale and if there exists a constant

c (c > 0) such that, for any F-stopping time τ ,

EFτ (〈L〉T − 〈L〉τ ) ≤ c.

The dynamic method In this part, we use the same dynamic method as in [12] to

characterize the value process of the optimization problem in terms of the solution of

a BSDE with parameters (Fα, β, B). The expressions of Fα and β are obtained below

in (2.5) by formal computations (these computations are justified in the last section of

this paper).

To this end, we construct, for any strategy ν and fixed t, a process Rν = (Rνs )s≥t
such that, for all s, Rνs = Uα(Xν

s − Ys), with Uα defined by: Uα(·) = − exp(−α·), and

such that the process Y solves the BSDE(Fα, β, B) of type (Eq1): the terminal condi-

tion is the contingent claim B, and the parameters Fα and β have to be determined.

Besides, this family (Rν) is such that

(i) RνT = Uα(Xν
T −B), for any strategy ν,

(ii) Rνt = Uα(x− Yt) (x is assumed to be a constant4).

(iii) Rν is a supermartingale for any strategy ν, ν ∈ At, and a martingale for a parti-

cular strategy ν∗, ν∗ ∈ At.
We rely on the equation (2.3) defining Xν and on Itô’s formula to get

Xν
s − Ys = (x− Yt) +

Z s

t
(νu − Zu)dMu − (Ls − Lt)

+

Z s

t
Fα(u, Zu)dCu +

β

2
(〈L〉s − 〈L〉t) +

Z s

t
(muνu)

′
(muλu)dCu.

Since, for all s, Rνs = − exp(−α(Xν
s − Ys)) and using the notation: Et,T (K) =

ET (K)
Et(K)

,

for a given local martingale K, we claim

exp

 
−α(

Z T

t
(νs − Zs)dMs)

!
=

Et,T (−α((ν − Z) ·M)) exp

 
α2

2

Z T

t
|ms(νs − Zs)|2dCs

!
, on the one hand,

exp (α(LT − Lt)) = Et,T (αL) exp

„
α2

2
(〈L〉T − 〈L〉t)

«
, on the other hand,

which leads to the mutiplicative decomposition

Rνs = − exp (−α(x− Yt)) Et,s (−α(ν − Z) ·M) Et,s(αL) exp
`
Aνs −Aνt

´
. (2.4)

4 This dynamic method can be extended to any attainable wealth x, i.e. any Ft-measurable
random variable such that: Xν

t = x, for at least one admissible strategy ν defined on [0, t].
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Here, Aν is such that

dAνs =

„
−αFα(s, Zs)− α(msνs)

′
(msλs) +

α2

2
|ms(νs − Zs)|2

«
dCs

+

„
α2 − αβ

2

«
d〈L〉s .

Since M and L are strongly orthogonal, we get

E(−α(ν − Z) ·M)E(αL) = E(−α(ν − Z) ·M + αL).

From (2.4), Rν is the product of a positive local martingale (as a continuous stochas-

tic exponential of a local martingale) and a finite variation process. The process Rν

being negative and relying on the multiplicative decomposition (2.4), the increasing

property of Aν for all ν yields the supermartingale property of Rν (the process Rν
∗

is a martingale for ν∗ satisfying: dAν
∗
≡ 0). These two last conditions on the family

(Aν) holding true for all ν, ν ∈ At, we get(
−αβ2 d〈L〉s + α2

2 d〈L〉s = 0 ⇒ (β = α),

−α(Fα(s, Zs) + (msνs)
′
(msλs)) + α2

2 |ms(νs − Zs)|2 ≥ 0.

This leads to

Fα(s, z) = inf
ν∈C

`α
2
|ms(ν − (z +

λs
α

))|2
´
− (msz)

′
(msλs)−

1

2α
|msλs|2. (2.5)

This method, explained for a fixed time t, relies on the dynamic programming principle

and could therefore be extended without any additional difficulty to any F-stopping

time τ .

2.2 Statement of the assumptions and main results

Assumptions To study the existence for solutions of the BSDEs(F, β,B) of type

(Eq1), we assume in all the sequel the boundedness of the terminal condition B. More-

over, we suppose that there exists a non negative predictable process ᾱ such that:R T
0 ᾱsdCs ≤ a, for a strictly positive constant a and three strictly positive constants

b, γ and C1 such that one of the three following conditions holds

(H1) |F (s, y, z)| ≤ ᾱs + bᾱs|y|+
γ

2
|msz|2 with γ ≥ |β| and γ ≥ b,

(H
′

1) |F (s, y, z)| ≤ ᾱs +
γ

2
|msz|2,

(H
′′

1 ) −C1(ᾱs + |msz|) ≤ F (s, y, z) ≤ ᾱs +
γ

2
|msz|2.

Remark 2.3 We give here some comments:

• Assumption (H1) is more general than the two other ones but we only require these

two last assumptions to establish the existence result. We first reduce the assumption

(H1) to (H
′

1) by a classical truncation procedure and we note that the additional
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assumption in (H
′′

1 ) is that the lower bound has at most linear growth in z: this

condition has already been used by [5] in the Brownian setting to justify the existence

of a minimal solution. We rely on the same construction to prove our existence result.

• The quadratic BSDE introduced in Section 2.1 and of the form (Eq1) has for

parameters: F = Fα, β = α and B (B standing for the liability in the optimization

problem (1.1)). In particular, the generator Fα given by (2.5) satisfies (H1). In fact,

we have

Fα(s, z) ≥ −(msz)
′
(msλs)−

1

2α
|msλs|2 ≥ −|msz||msλs| −

1

2α
|msλs|2,

which leads to

Fα(s, z) ≥ −
`α

2
|msz|2 +

1

α
|msλs|2

´
.

Defining ᾱ, for all s, by: ᾱs = 1
α |msλs|2, we claim that:

Z T

0
ᾱsdCs ≤ a, P-a.s., with

the parameter a depending on α and aλ (this last constant is defined in equation (2.2)).

Since 0 is in C, we get

Fα(s, z) ≤ α

2
|msz|2.

• Even if we suppose that F is Lipschitz w.r.t. y and z, we cannot obtain directly

existence and uniqueness result for a BSDE of type (Eq1), because of the presence of

the additional term involving the quadratic variation process 〈L〉. This explains the

introduction of another type of BSDEs denoted by (Eq2)

(Eq2)


dUs = −g(s, Us, Vs)dCs + VsdMs + dNs,

UT = eβB .

In the previous equation, V ·M+N stands for the martingale part and N is a R-valued

martingale orthogonal to M (the presence of such a martingale N is required, since

M does not enjoy the predictable representation property). In the sequel, we denote it

by BSDE(g, eβB). This second type of BSDE is linked with the BSDE(F, β,B) of type

(Eq1) by using an exponential change of variable. Indeed, setting: U = eβY , this leads

to

g(s, u, v) =

„
βuF (s,

ln(u)

β
,
v

βu
)− 1

2u
|msv|2

«
1u>0.

This type of BSDE is simpler, since there is no term involving the quadratic varia-

tion process 〈N〉 in (Eq2). Furthermore, these BSDEs having a generator g such that

(g : (s, u, v)→ g(s, u, v)) is uniformly Lipschitz w.r.t. u and v have been studied in [8]

in a general continuous setting. Our aim is to establish a one-to-one correspondence be-

tween the solutions of the BSDE(F, β,B) of type (Eq1) and those of the BSDE(g, eβB)

of type (Eq2).

To prove a uniqueness result for solutions of the BSDE(F, β,B) of type (Eq1), we

impose that there exists two reals µ and C2, a non-negative predictable process θ and
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a constant cθ such that

(H2)

8>>>>>>>>>>><>>>>>>>>>>>:

∀ z ∈ Rd, ∀ y1, y2 ∈ R,

(y1 − y2)(F (s, y1, z)− F (s, y2, z)) ≤ µ|y1 − y2|2,

∃ θ s.t.

Z T

0
|msθs|2dCs ≤ cθ, ∀ y ∈ R, ∀ z1, z2 ∈ Rd,

|F (s, y, z1)− F (s, y, z2)| ≤ C2(msθs + |msz
1|+ |msz

2|)|ms(z
1 − z2)|.

Remark 2.4 The first inequality in assumption (H2) corresponds to the monotonicity

assumption (this assumption is given in [20]). The second assumption on the increments

in the variable z is a kind of local Lipschitz condition w.r.t z, which is similar to the one

in [12]. We check that (H2) is satisfied by the generator Fα with: C2 = α
2 , θ ≡ 4

|mλ|
α

and µ = 0, since Fα is independent of y: indeed, for any z1, z2 in Rd, we argue that

the increments of Fα w.r.t. z satisfy

|Fα(s, z1) − Fα(s, z2)|

≤ |α
2

`
dist2(ms(z

1 +
λ

α
),msC)− dist2(ms(z

2 +
λ

α
),msC)

´
|

+| − (msz
1)
′
(msλ) + (msz

2)
′
(msλ)|

≤ α

2
|ms(z

1 − z2)|
`
|msz

1|+ |msz
2|+ 2

|msλ|
α

´
+ |ms(z

1 − z2)||msλ|.

Main results To obtain the existence and uniqueness results for solutions of BSDEs

of type (Eq1), we establish the same results for BSDEs of type (Eq2). We now state

the results which are justified in Section 3.

Theorem 2.5 Existence: Considering the BSDE(F, β,B) and assuming both that the

generator F satisfies (H1) and that the terminal condition B is bounded, there exists

a solution (Y , Z, L) in S∞ × L2(d〈M〉 ⊗ dP)×M2([0, T ]) of the BSDE.

Theorem 2.6 Uniqueness: For all BSDEs(F, β,B) of type (Eq1) such that the gen-

erator F satisfies both (H1) and (H2) and such that the terminal condition is bounded,

there exists a unique solution (Y , Z, L) in S∞ × L2(d〈M〉 ⊗ dP)×M2([0, T ]).

Theorem 2.7 Comparison: Considering two BSDEs of the form (Eq1) given by

(F 1, β, ξ1) and (F 2, β, ξ2) where F 1 and F 2 satisfy (H1) and (H2) and assuming fur-

thermore that (Y 1, Z1, L1) and (Y 2, Z2, L2) are respective solutions of each BSDE

such that“
ξ1 ≤ ξ2 and F 1(s, Y 1

s , Z
1
s ) ≤ F 2(s, Y 1

s , Z
1
s )
”
, P-a.s. and for all s,

then, we have: Y 1
s ≤ Y 2

s , P-a.s. and for all s.

We only provide proofs for the two first theorems, since, without additional difficulty,

we check that the comparison result given in Theorem 2.7 holds: to prove this, we

proceed with a linearization of the generator similar as the one in Section 3.2: this

consists in applying the Itô-Tanaka formula to the adapted and bounded process:

Ỹ 1,2
· = exp(2µC·)|(Y 1

· − Y 2
· )+|2 and in rewriting the same proof.
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3 Results about quadratic BSDEs

3.1 A priori estimates

In this part, we obtain precise a priori estimates for solutions of the BSDEs of type

(Eq1). Referring to previous studies on quadratic BSDEs (such as in [5] or [16]), these

estimates are the starting point of the proof of the main existence result.

To prove these estimates, we assume the existence of a solution (Y , Z, L) of the

BSDE(F, β,B) such that F satisfies (H1) and we proceed analogously to [5]. However,

since the authors work with a brownian filtration, we have to generalize their method

to our setting.

Lemma 3.1 Considering a BSDE of type (Eq1) given by (F, β,B) and assuming both

boundedness of B and condition (H1) for F , we can give explicitely in terms of the

parameters γ, a, b (given in (H1)) and |B|∞ the three constants c, C, C
′

such that,

for any solution (Y,Z, L) in S∞ × L2(d〈M〉 ⊗ dP)×M2([0, T ]),

(i) P-a.s. and for all t, c ≤ Yt ≤ C,

(ii) for any F-stopping time τ, EFτ
 Z T

τ
|msZs|2dCs + 〈L〉T − 〈L〉τ

!
≤ C

′
.

Proof By definition, the solution (Y,Z, L) belongs to S∞×L2(d〈M〉⊗dP)×M2([0, T ])

and our first objective is to explicit both a lower and an upper bound for Y . Setting

first: ã = eba−1
b , we aim at proving

∀ t, exp(γ|Yt|) ≤ exp
`
γ(ã+ |B|∞eba)

´
. (3.1)

For this and for fixed t, we introduce H =
`
U(s, |Ys|)

´
such that

∀ s ≥ t, Hs = U(s, |Ys|) = exp

 
γ
`exp(

R s
t bᾱudCu)− 1

b

´
+ γ|Ys| exp(

Z s

t
bᾱudCu)

!
,

and satisfying: U(t, |Yt|) = eγ|Yt|. Applying Itô’s formula to the process H, we jus-

tify that it is a local submartingale: to this end, we prove that the predictable with

bounded variation process A in the canonical decomposition of the semimartingale H

is increasing. For sake of clarity, we first apply the Itô-Tanaka formula to |Y |

d|Ys| = −sign(Ys)F (s, Ys, Zs)dCs − sign(Ys)
β
2 d〈L〉s + d`s

+sign(Ys)
`
ZsdMs + dLs

´
,

` being the local time of Y . Now, Itô’s formula leads to the following expression of A

exp(−
R s
t bᾱudCu)dAs =

Hs
“
γᾱs − γsign(Ys)F (s, Ys, Zs) + γbᾱs|Ys|+ γ2

2 e
R s
t bᾱudCu |msZs|2

”
dCs

+ Hsγd`s + Hsγ
“`γ

2 exp(
R s
t bᾱudCu)− sign(Ys)

β
2

´
d〈L〉s

”
.

Using assumption (H1) and the inequalities: |β| ≤ α and ᾱ ≥ 0, we get that the

process A is increasing. Hence, H is a local submartingale and we conclude relying on a



10

standard localization procedure: i.e., there exists a sequence (τk) of increasing stopping

times, converging to T and taking values in [t, T ] and such that (U(s ∧ τk, |Ys∧τk |) is

a submartingale. This entails

eγ|Yt| = U(t, |Yt|) ≤ E
`
U(T ∧ τk, |YT∧τk |)|Ft

´
.

Applying the bounded convergence theorem to
`
E
`
U(T ∧ τk, |YT∧τk |)|Ft

´´
k

and letting

k tend to infinity, we obtain

eγ|Yt| ≤ E
`
U(T, |YT |)|Ft

´
,

which gives (3.1). Hence, assertion (i) of lemma 3.1 is satisfied with

C = (ã+ |B|∞eba) and c = −(ã+ |B|∞eba).

To prove assertion (ii), we apply Itô’s formula to the bounded process: ψ̃(Y ) =

ψγ(Y + |c|), with ψγ such that

ψγ(x) =
eγx − 1− γx

γ2
.

Such a function satisfies

ψγ
′(x) ≥ 0, if x ≥ 0, and − γψ

′

γ + ψ
′′

γ = 1, (3.2)

and since c is the lower bound of Y , we have: Y + |c| ≥ 0, P-a.s. We now consider

an arbitrary stopping time τ of (Ft)t∈[0,T ]. Taking the conditional expectation with

respect to Fτ in Itô’s formula between τ and T , we get

ψ̃(Yτ )−EFτ (ψ̃(YT ))

= −EFτ
 Z T

τ
ψ̃
′
(Ys)(−F (s, Ys, Zs)dCs −

β

2
d〈L〉s)

!

− EFτ
 Z T

τ
ψ̃
′
(Ys)(ZsdMs + dLs)

!
− EFτ

 Z T

τ

ψ̃
′′

(Ys)

2
(|msZs|2dCs + d〈L〉s)

!
.

Since Z ·M and L are square integrable martingales and ψ̃
′
(Y ) is a bounded process,

the conditional expectation of the terms of the second line in the right-hand side va-

nishes. Using both the upper bound on F in (H1) and simple computations, we obtain

ψ̃(Yτ )− EFτ (ψ̃(YT ))

≤ EFτ
Z T

τ
ψ̃
′
(Ys)(|ᾱs|(1 + b|Y |S∞)dCs

+ EFτ
Z T

τ
(
β

2
ψ̃
′
− 1

2
ψ̃
′′

)(Ys)d〈L〉s+ EFτ
Z T

τ
(
γ

2
ψ̃
′
− 1

2
ψ̃
′′

)(Ys)|msZs|2dCs.

Using the properties of ψγ given by (3.2) and the fact that: γ ≥ |β|, we get`1

2
ψ̃
′′
− β

2
ψ̃
′´

(Ys) ≥
`1

2
ψ̃
′′
− γ

2
ψ̃
′´

(Ys) =
1

2
, P-a.s. and for all s.

Putting in the left-hand side of Ito’s formula applied to ψ̃(Y ) the two last terms, it

follows from the two last inequalities
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1
2EFτ

 Z T

τ
|msZs|2dCs + (〈L〉T − 〈L〉τ )

!

≤ EFτ
 Z T

τ
(
1

2
ψ̃
′′
− γ

2
ψ̃
′´

(Ys)|msZs|2dCs +

Z T

τ
(
1

2
ψ̃
′′
− β

2
ψ̃
′´

(Ys)d〈L〉s

!
,

≤ 2|ψ̃(Y )|S∞ + |ψ̃
′
(Y )|S∞

Z T

0
(|ᾱs|(1 + b|Y |S∞)dCs,

and using the integrability assumption on ᾱ given in section 2.2, we get the existence

of a constant C
′

such as in assertion (ii), Lemma 3.1: this constant is independent of

the stopping time τ and depends only on the parameters a, b, γ and |B|∞.

ut

3.2 The uniqueness result

Proof The key idea of this proof is to proceed by linearization and to justify as in [12]

the use of Girsanov’s theorem. Let (Y 1, Z1, L1) and (Y 2, Z2, L2) be two solutions of

the BSDE(F, β,B) with F satisfying both (H1) and (H2) and B bounded. We define

Y 1,2 by: Y 1,2 = Y 1 − Y 2 (Z1,2 and L1,2 are defined similarly) and we consider the

nonnegative and bounded semimartingale (Ỹ 1,2) defined by: Ỹ 1,2
t = e2µCt |Y 1,2

t |2. We

then use Itô’s formula

dỸ 1,2
s = 2µỸ 1,2

s dCs + e2µCs2Y 1,2
s dY 1,2

s +
1

2
e2µCs2d〈Y 1,2〉s.

Since Y 1 and Y 2 are solutions of the BSDE(F, β,B), we have

dY 1,2
s = −

“
F (s, Y 1

s , Z
1
s )− F (s, Y 2

s , Z
2
s )
”
dCs −

β

2
d
“
〈L1〉s − 〈L2〉s

”
+ dKs,

with: K = Z1,2 ·M + L1,2, which stands for the martingale part. Hence, considering

Itô’s formula between t and an arbitrary F-stopping time τ (τ ≥ t), we get

Ỹ 1,2
t − Ỹ 1,2

τ = −
Z τ

t
2µỸ 1,2

s dCs

+

Z τ

t
e2µCs2Y 1,2

s (F (s, Y 1
s , Z

1
s )− F (s, Y 2

s , Z
2
s ))dCs

+

Z τ

t
e2µCs2Y 1,2

s
β

2
d〈L1,2, L1 + L2〉s

−
Z τ

t
e2µCs2Y 1,2

s

`
Z1,2
s dMs + dL1,2

s

´
−
Z τ

t
e2µCs

1

2
2d〈Y 1,2〉s| {z }

≤0

.

The generator F satisfying (H2), it follows

2Y 1,2
s (F (s, Y 1

s , Z
1
s )− F (s, Y 2

s , Z
2
s )) ≤ 2µ|Y 1,2

s |2 + 2Y 1,2
s (msκs)

′
(msZ

1,2
s ),
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where the Rd-valued process κ is defined as follows8><>:κs =
(F (s, Y 2

s , Z
1
s )− F (s, Y 2

s , Z
2
s ))(Z1,2

s )

|msZ
1,2
s |2

, if |msZ
1,2
s | 6= 0,

κs = 0, otherwise.

We introduce a new process A

As = 2Y 1,2
s

“
F 1(s, Y 1

s , Z
1
s )− F 2(s, Y 2

s , Z
2
s

”
−
“

2µ|Y 1,2
s |2 + 2Y 1,2

s (msκs)
′
(msZ

1,2
s )

”
.

This process being almost surely non positive, we obtain

Ỹ 1,2
t − Ỹ 1,2

τ =

Z τ

t
AsdCs −

Z τ

t
e2µCs

1

2
2d〈Y 1,2〉s| {z }

≤0

+

Z τ

t
2Y 1,2
s e2µCs(msκs)

′
(msZ

1,2
s )dCs

+

Z τ

t
2Y 1,2
s e2µCs

β

2
d〈L1,2, L1 + L2〉s

−
Z τ

t
2e2µCsY 1,2

s Z1,2
s dMs −

Z τ

t
2e2µCsY 1,2

s dL1,2
s .

We then consider the stochastic integrals

Ñ =
“

2e2µCY 1,2Z1,2
”
·M and N̄ = κ ·M, on the one hand,

L̃ =
“

2Y 1,2e2µC
”
· L1,2 and L̄ =

β

2
(L1 + L2), on the other hand.

From (H2), we deduce

∃ C > 0, |msκs| ≤ C
“
|msθs|+ |msZ

1
s |+ |msZ

2
s |
”
.

Using both the assertion (ii) in Lemma 3.1 and the assumption on θ given by (H2),

we get: κ ·M + β
2 (L1 +L2) is a BMO martingale and referring then to [14], E(κ ·M +

β
2 (L1 +L2)) is a true martingale. Defining Q such that: dQ

dP = E(κ ·M + β
2 (L1 +L2)),

Girsanov’s theorem entails that: K = Ñ + L̃− 〈Ñ + L̃, κ ·M + β
2 (L1 +L2)〉, is a local

martingale under Q: this implies the existence of a sequence (τk) converging to T such

that each τk may be assumed greater than t and such that K·∧τk is a martingale.

Hence, between t = t ∧ τk and τk, the adapted process Ỹ satisfies

Ỹ 1,2
t = Ỹ 1,2

τk
+

Z τk

t
AsdCs + (Kτk −Kt).

Taking the conditional expectation w.r.t Ft under Q in that last equality and using

the martingale property of K·∧τk , we get

Ỹ 1,2
t ≤ EQ

“
Ỹ 1,2
τk
|Ft
”
. (3.3)

As in the proof of Lemma 3.1 on page 9, the use of the bounded convergence theorem

in the right-hand side of (3.3) entails

Ỹ 1,2
t ≤ lim

k
EQ`Ỹ 1, 2

τk
|Ft
´

= 0.
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Hence, it implies

∀ t, Ỹ 1,2
t ≤ 0 Q-a.s. (and P-a.s., because of the equivalence of P and Q),

which ends the proof (Ỹ 1,2 being a non-negative adapted process).

ut

3.3 Existence

3.3.1 Main steps of the proof of Theorem 2.5

In this part and to prove the existence result (Theorem 2.5), we proceed with three

main steps.

In a first step, we prove that, to solve a BSDE of type (Eq1) under assumption

(H1), it suffices to solve the same BSDE under a simpler assumption (H
′

1).

In a second step, we introduce an intermediate BSDE of the form (Eq2) and we

establish a one-to-one correspondence between the existence of a solution of a BSDE

of the form (Eq1) and one of the form (Eq2).

The third and last step consists in constructing a solution of the BSDE of the form

(Eq2) when its generator g satisfies (H
′

1) and in establishing a “monotone stability”

result analogous to the one given in [16].

Step 1: Truncation in y We rely on the a priori estimates given in Lemma 3.1 to

strengthen the assumption on the generator and obtain precise estimates for an inter-

mediate BSDE. More precisely, we show that it is sufficient to study existence under

the simpler assumption (H
′

1) (instead of (H1))

(H
′

1) ∃ ᾱ ≥ 0,

Z T

0
ᾱsdCs ≤ a (a > 0), such that |F (s, y, z)| ≤ ᾱs +

γ

2
|msz|2.

Assuming that we have a solution of the BSDE(F, β,B) of type (Eq1) under assumption

(H
′

1) on F , we deduce the existence of a solution of this BSDE under (H1). For this,

we define K by: K = |c| + |C|, with c and C the two constants given in assertion (i)

in Lemma 3.1 and we introduce(
dY Ks = −FK(s, Y Ks , ZKs )dCs − β

2 d〈L
K〉s + ZKs dMs + dLKs ,

Y KT = B,

where the generator FK and the truncation function ρK are respectively defined by:

FK(s, y, z) = F (s, ρK(y), z) and

ρK(y) =

8<:
−K if y < −K,
y if |y| ≤ K,
K if y > K.

Hence, we have

∀ y ∈ R, z ∈ Rd, |FK(s, y, z)| ≤ ᾱs(1 + b|ρK(y)|) +
γ

2
|msz|2.
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Since: |ρK(y)| ≤ |y|, FK satisfies again (H1) with the same parameters as F . Using

Lemma 3.1, K is an upper bound of Y K in S∞, for any solution (Y K , ZK , LK) of

BSDE(FK , β, B). Besides, if we replace ᾱ by: α̃ = ᾱ(1 + bK), FK satisfies (H
′

1).

Due to the initial assumption, there exists a solution denoted by (Y K , ZK , LK) of

BSDE(FK , β, B). Since: |Y K | ≤ K, FK and F coincide along the trajectories of this

solution and hence, (Y K , ZK , LK) is a solution of BSDE(F , β, B) with F satisfying

(H1).

Step 2: an intermediate BSDE To establish the one-to-one correspondence, we first

assume the existence of a solution (Y , Z, L) of BSDE(F, β,B) with F satisfying (H
′

1)

and we set: U = eβY . Using Itô’s formula, we check that U solves a BSDE of the type

(Eq2) and that the expression of the generator g is given by

g(s, u, v) =

„
βuF (s,

ln(u)

β
,
v

βu
)− 1

2u
|msv|2

«
1u>0. (3.4)

A solution of the BSDE(g, eβB) of type (Eq2) is given by the triplet (U , V , N) such

that: Us = eβYs , Vs = βUsZs and N = βU ·L. Our aim is to prove that the converse is

true: i.e. if we can solve the BSDE(g, eβB) of type (Eq2) under the assumption (H
′

1)

on g, then we obtain a solution of the BSDE(F , β, B) of type (Eq1) by setting

Y =
ln(U)

β
, Z =

V

βU
, and L =

1

βU
·N. (3.5)

To achieve this, we give precise estimates of U in S∞ for any solution (U , V , N)

of the BSDE(g, eβB) of type (Eq2). Due to the singularity of the expression (3.4) of g

with respect to u, we first rely on a truncation argument and for this, we introduce a

new generator G

G(s, u, v) = βρc2(u)F

„
s,

ln(u ∨ c1)

β
,

v

β(u ∨ c1)

«
− 1

2(u ∨ c1)
|msv|2.

The two positive constants c1 and c2 are defined later and the function ρc2 is the same

as in the first step. Since F satisfies (H
′

1) and since: ρc2(u) ≤ c2, we obtain that G

also satisfies (H
′

1). Hence, for any positive constants c1 and c2, there exists a solution

of the BSDE(G, eβB) of type (Eq2). We denote it (Uc
1, c2 , V c

1, c2 , Nc1, c2). Thanks

to the estimates

|G(s, u, v)| ≤ βρc2(u)(ᾱs +
γ|msv|2
2|βc1|2 ) +

|msv|2
2c1

≤ βᾱs|u|+ γ̂
2 |msv|2, with: γ̂ = γc2

|β||c1|2 + 1
c1
,

we obtain that G satisfies (H1) with the parameters a, b and γ defined by

a =

Z T

0
|β|ᾱsdCs, b = 1, γ = γ̂.

Using (i) in Lemma 3.1, the solution (Uc
1, c2 , V c

1, c2 , Nc1, c2) satisfies

Uc
1, c2 ≤ ea − 1 + |eβB |∞ea, P -a.s.
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Defining c2 by: c2 = ea − 1 + |eβB |∞ea, this provides an upper bound independent of

γ. To prove the existence of a strictly positive lower bound, we consider a solution (U ,

V , N) of the BSDE(G, eβB) and we introduce the adapted process Ψ(U) for all t by:

Ψ(Ut) = e−
R t
0 β̃sdCsUt (we check that: β̃ = |β|ᾱsign(Us), satisfies:

Z T

0
|β̃s|dCs ≤ a,

P-a.s.). Applying then Itô’s formula to Ψ(U) between t and T , we get

Ψ(Ut)−Ψ(UT )

=

Z T

t

`
e−

R s
0 β̃udCu(G(s, Us, Vs) + β̃sUs)

´
dCs −

Z T

t
e−

R s
0 β̃udCu(VsdMs + dNs).

=

Z T

t
e−

R s
0 β̃udCuAsdCs −

Z T

t

γ

2
e−

R s
0 β̃udCu |msVs|2dCs

−
Z T

t

`
e−

R s
0 β̃udCu(VsdMs + dNs)

´
,

with the process A such that: As = G(s, Us, Vs) +
`
β̃sUs + γ

2 |msVs|2
´
, which is almost

surely positive. Since −γ2 (V ·M) is a BMO martingale (thanks to (ii) in Lemma 3.1),

we introduce a probability measure by defining: dQ
dP = E(−γ2V ·M). The Girsanov’s

transform M̃ of M : M̃ = M+ γ
2 〈V ·M,M〉, is a local martingale under Q and it follows

that Ψ(U) is the sum of a local martingale (under Q) and an increasing process: relying

on the standard localization procedure and on the boundeness assumption on Ψ(U),

we conclude

Ψ(Ut) ≥ EQ(Ψ(UT )|Ft).

Hence, Ut ≥ EQ(
`

inf UT
´
e−

R T
t β̃sdCs |Ft), and if c1 is defined by: c1 = e−|β|

`
|B|∞+a

´
,

it is a lower bound of U . For these choices of c1, c2, the generator G satisfies (H1) and,

for any solution (U , V , N),

c1 ≤ Us ≤ c2, P-a.s. and for all s.

Since: G(s, Us, Vs) = g(s, Us, Vs) P-a.s. and for all s, (U , V , N) is a solution of the

BSDE(g, eβB). The process U being strictly positive and bounded, we can define (Y ,

Z, L) by (3.5) and applying Itô’s formula to
ln(U)
β , we check that (Y , Z, L) is a solution

of the BSDE(F, β,B).

Step 3: Approximation To prove the existence of a solution of the BSDE(F, β,B) of

type (Eq1) under (H1), the above two steps show that it is sufficient to prove the

existence of a solution of the BSDE(g, eβB) of type (Eq2). Assuming here that F sat-

isfies (H
′

1), Step 2 entails that we only need to prove existence for the second type of

BSDE under assumption (H
′

1) on g. Analogously to [16], we construct an approxima-

ting sequence (Un, V n, Nn) satisfying

• these triplets are solutions of the BSDEs(gn, eβB),

• the sequence (gn) is increasing and converges, P-a.s. and for all s, to g (g : (y, z)→
g(s, y, z)).

From now and for the remaining of Section 3.3.1, we suppose

Assumption 1: The generator g satisfies (H
′′

1 ). (3.6)
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We then proceed by defining gn by inf-convolution

gn(s, u, v) = ess inf
u
′
, v
′
,

u
′
,v
′∈Qd

“
g(s, u

′
, v
′
) + n|ms(v − v

′
)| + n|u− u

′
|
”
.

Such a gn is well defined and globally Lipschitz continuous, which means

∀ u1, u2, v1, v2, |gn(s, u1, v1)− gn(s, u2, v2)| ≤ n
`
|ms(v

1− v2)|+ |u1− u2|
´
. (3.7)

Since (gn) is increasing and converges, P-a.s. and for all s, to g : (u, v) → g(s, u, v)

which is continuous w.r.t. (u, v), Dini’s theorem implies that the convergence is uniform

over compact sets. Besides, using that: gn ≤ g, we obtain

sup
n
|gn(s, 0, 0)| ≤ ᾱs. (3.8)

The existence of a unique solution (Un, V n, Nn) of the BSDEs given by (gn, eβB)

in S2 × L2(d〈M〉 ⊗ dP)×M2([0, T ])5 follows from (3.7) and (3.8) (a detailed proof of

this existence result can be found in [8] where it is obtained in a general continuous

setting). Furthermore, applying Theorem 2.7 for these BSDEs of type (Eq2) and using

that (gn)n is increasing, we get: Un ≤ Un+1. The following result entails that, for all

n, Un is in S∞.

Proposition 3.2 Let (Un, V n, Nn) be a solution in S2×L2(d〈M〉⊗dP)×M2([0, T ])

of a BSDE of the type (Eq2) given by the parameters (gn, B̄), with a generator gn Ln-

Lipschitz and a terminal condition B̄ bounded, we have

∃ K(Ln, T ) > 0, ∀ t, |Unt |2 ≤ K(Ln, T )E

 
|B̄|2∞ + (

Z T

t
|gn(s, 0, 0)|dCs)2|Ft

!
.

(3.9)

The proof, relegated to the appendix, is adapted from the results given in Proposition

2.1 in [4]. Relying on (3.8) and on the assumption on ᾱ, Proposition 3.2 implies that

Un is in S∞. Furthermore, since each generator gn satisfies the assumption (H
′′

1 ) (and

hence (H1) with the same parameters), assertion (i) in Lemma 3.1 ensures that (Un)

is uniformly bounded in S∞.

Step 4: Convergence of the approximation To prove the convergence of the solutions of

the BSDEs(gn, eβB) under Assumption 1 (see (3.6)), we introduce the triplet (Ũ , Ṽ , Ñ)

as being the limit (in a specific sense) of (Un, V n, Nn). (Un) being increasing, we set:

Ũs = lim
n
↗ (Uns ), P-a.s. and for all s. Any generator gn satisfying (H

′′

1 ), and hence

(H1) with the same parameters, the estimate (ii) in Lemma 3.1 holds true for each term

of (V n)n and (Nn)n (uniformly in n). As bounded sequences of Hilbert spaces, there

exist subsequences of (V n) and (Nn
T ) such that: V n

w−→ Ṽ (in L2(d〈M〉 ⊗ dP)), and:

Nn
T

w−→ ÑT in L2(Ω,FT ,P). This implies the weak convergence in L2(Ω,Ft,P) of Nn
t

to Ñt, if we define Ñt by: Ñt = EFt(ÑT ). However, to justify the passage to the limit

5 The space S2 consists of all continuous processes U such that: E
 

sup
t∈[0,T ]

|Ut|2
!
<∞.



17

in the BSDEs given by (gn, eβB), we need the strong convergence of (V n), eventually

along a subsequence, to Ṽ in L2(d〈M〉⊗ dP) (resp. (Nn) to Ñ inM2([0, T ])). We give

one essential result (similar to the stability result in [16]) which is the key ingredient

in the last step of the proof of Theorem 2.5.

Lemma 3.3 Let (gn) and (B̃n) be two sequences associated with the BSDEs(gn, B̃n)

of type (Eq2) and satisfying

• P-a.s. and for all s, (gn : (u, v) → gn(s, u, v)) converges increasingly w.r.t. n and

uniformly on the compact sets of R × Rd to g (g : (u, v) → g(s, u, v) (g is continuous

w.r.t. (u, v)).

• For all n, each gn satisfies (H
′′

1 ), with the same parameters as g (independent of n),

• (B̃n) is a uniformly bounded sequence of FT -measurable random variables, which

converges almost surely to B̃ and increasingly w.r.t. n.

If there exists one solution (Un, V n, Nn) of the BSDEs given by (gn, B̃n) such that the

sequence (Un)n is increasing, then the sequence (Un, V n, Nn) converges to (Ũ , Ṽ , Ñ)

in the following sense

and

8>>>><>>>>:
E

 
sup

t∈[0,T ]
|Unt − Ũt|

!
→ 0, as n →∞,

E

 Z T

0
|ms(Ṽs − V ns )|2dCs + |ÑT −Nn

T |
2

!
→ 0, as n →∞.

and the triplet (Ũ , Ṽ , Ñ) solves the BSDE(g, B̃) of type (Eq2).

Remark 3.4 The “stability” result stated in Lemma 3.3 holds also for the solution of

the BSDE(F, β,B) of type (Eq1) (this results from the correspondence established in

the second step).

We relegate to subsection 3.3.2 the technical point in the proof of Lemma 3.3, i.e. the

strong convergence in their respective Hilbert spaces of the sequences (V n) and (Nn).

Assuming this, we prove the existence of a solution for BSDE(g, B̃) by justifying the

passage to the limit in the BSDEs(gn, B̃n)

Unt = B̃n +

Z T

t
gn(s, Uns , V

n
s )dCs −

Z T

t
V ns dMs − (Nn

T −N
n
t ).

To this end, we check that, P-a.s. and for all t,

(i) V n → Ṽ (in L2(d〈M〉 ⊗ dP)), as n→∞,

(ii) Nn → Ñ (inM2([0, T ])), as n→∞,

(iii) E
` Z t

0
|gn(s, Uns , V

n
s )− g(s, Ũs, Ṽs)|dCs

´
→ 0, as n→∞.

Assertions (i) and (ii) are consequences of the strong convergence of the sequences

(V n) (resp. (Nn)) in L2(d〈M〉 × dP) (resp. in M2([0, T ])). To prove (iii), we justify

the convergence in L1(ds⊗ dP) using the two following results:

• The convergence in dCs⊗dP-measure of (msV
n
s ) and (Uns ) (at least along proper sub-

sequences) and the properties of (gn), which ensure the convergence of (gn(s, Uns , V
n
s ))

to g(s, Ũs, Ṽs) in dCs ⊗ dP-measure.

• The uniform integrability of the family (gn(s, Uns , V
n
s )) resulting from the estimates

of gn given by (H
′

1) and from the fact that (|mV n|2) is a uniformly integrable sequence,

since it is strongly convergent in L1(dC × dP).
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Passing to the limit as n goes to ∞, we get that the triplet (Ũ , Ṽ , Ñ) is a solution of

the BSDE(g, eβB).

To obtain a solution of the BSDE(F, β,B), we rely on the results of the two first steps

and we set (Ỹ , Z̃, L̃) using the formula (3.5).

�

Now, we relax Assumption 1 given by (3.6): i.e., we proceed with the case when g only

satisfies (H
′

1). In this case, the lower bound is no more Lipschitz and, for the procedure,

we refer once again to [5]: the idea consists in using two successive approximations. For

this, we define (gn, p) as follows

gn,p(s, u, v) = ess inf
u′ ,v′

`
g+(s, u

′
, v
′
) + n|ms(v − v

′
)|+ n|u− u

′
|
´

− ess inf
u′ ,v′

`
g−(s, u

′
, v
′
) + p|ms(v − v

′
)|+ p|u− u

′
|
´
,

which is increasing w.r.t. n and decreasing w.r.t. p. The entire proof can be rewritten

by passing to the limit as n goes to ∞ (p being fixed) and then as p goes to ∞.

3.3.2 Proof of the “stability” result in Lemma 3.3

Following the same method as in [16], we establish the strong convergence of the se-

quences (V n)n and (Nn)n to Ṽ and Ñ (this requires the a priori estimates established

in Lemma 1 for the solutions of the BSDEs given by (gn, B̃n)). We first introduce the

nonnegative semimartingale: ΦL(Un − Up) = (ΦL(Un,p))n≥p, with ΦL such that

ΦL(x) =
eLx − Lx− 1

L2
. (3.10)

This function ΦL satisfies: ΦL ≥ 0, ΦL(0) = 0, Φ
′′

L − LΦ
′

L = 1, Φ
′

L(x) ≥ 0 and

Φ
′′

L(x) ≥ 1, if x ≥ 0. Since V n,p ·M and Nn,p are square integrable martingales, their

expectations are constant. Applying Itô’s formula to ΦL(Un,p) between 0 and T , we

get

EΦL(Un,p0 )− EΦL(Un,pT ) = E
Z T

0

`
Φ
′

L(Un,ps )(gn(s, Uns , V
n
s )− gp(s, Ups , V

p
s ))
´
dCs

−E
Z T

0

Φ
′′

L

2
(Un,ps )|ms(V

n,p
s )|2dCs − E

Z T

0

Φ
′′

L

2
(Un,ps )d〈Nn,p〉s.

Then, since both gn and gp satisfy (H
′

1) with the same parameters,

|gn(s, Uns , V
n
s ) −gp(s, Ups , V

p
s )|

≤ 2ᾱs +
γ

2
|ms(V

n
s )|2 +

γ

2
|ms(V

p
s )|2

≤ 2ᾱs +
3γ

2

`
|ms(V

n,p
s )|2 + |ms(V

p
s − Ṽs)|2 + |msṼs|2

´
+ γ
`
|ms(V

p
s − Ṽs)|2 + |msṼs|2

´
≤ 2ᾱs +

3γ

2

`
|ms(V

n,p
s )|2

´
+

5γ

2

`
|ms(V

p
s − Ṽs)|2 + |msṼs|2

´
.
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The two last inequalities result from the convexity of: z → |z|2. Using these estimates

and transferring both

E

 Z T

0

Φ
′′

L

2
(Un,ps )|ms(V

n,p
s )|2dCs

!
and E

 Z T

0
Φ
′

L(Un,ps )
3γ

2
|ms(V

n,p
s )|2dCs

!
,

in the left-hand side of Itô’s formula applied to ΦL(Un,p), we obtain

EΦL(Un,p0 ) +
1

2
E
`
|Nn,p
T |2

´
+ E

 Z T

0
(
Φ
′′

L

2
− 3γ

2
Φ
′

L)(Un,ps )|ms(V
n,p
s )|2dCs

!

≤ EΦL(B̃n − B̃p) + E
Z T

0
Φ
′

L(Un,ps )

„
2ᾱs +

5γ

2
(|ms(V

p
s − Ṽs)|2 + |msṼs|2)

«
dCs. (∗∗)

Setting: L = 8γ, and using the definition (3.10), we check

Φ
′′

L − 8γΦ
′

L = 1, (3.11)

which entails the positiveness of the last term of the left-hand side. Then, thanks to

the weak convergence of (V n) to Ṽ (and of (Nn) to Ñ) and the convexity of: z → |z|2,

we have

lim inf
n→∞

E

 Z T

0
(
Φ
′′

L

2
− 3γ

2
Φ
′

L)(Un,ps )|ms(V
n,p
s )|2dCs

!
≥ (3.12)

E

 Z T

0
(
Φ
′′

L

2
− 3γ

2
Φ
′

L)(Ũs − Ups )(|ms(Ṽs − V ps )|2)dCs

!
.

Similarly, we get

lim inf
n→∞

E
`
|Nn,p
T |2

´
≥ E

`
|ÑT −Np

T |
2´. (3.13)

Using the almost sure convergence of the increasing sequence (Un) to Ũ , the dominated

convergence theorem yields

Φ
′

L(Un,ps )

„
5γ

2
(|ms(Ṽs − V ps )|2 + |msṼs|2) + 2ᾱs

«
≤ Φ

′

L(Ũs − Ups )

„
5γ

2
(|ms(Ṽs − V ps )|2 + |msṼs|2) + 2ᾱs

«
, (3.14)

which holds uniformly in n. Besides, the process in the right-hand side of (3.14) is inte-

grable w.r.t. dC, as a product of a bounded process and a sum of integrable processes.

To obtain a lower bound of the left-hand side of inequality (**), we use both (3.12)

and (3.13). Then, for the right-hand side of (**), we rely on (3.14) and on the almost

sure and increasing convergence of (B̃n) to B̃ to get
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EΦL(Ũ0 − Up0 ) +
1

2
E
`
|ÑT −Np

T |
2´

+ E
Z T

0
((
Φ
′′

L

2
− 3γ

2
Φ
′

L)(Ũs − Ups )|ms(Ṽs − V ps )|2dCs)

≤ E

 
ΦL(B̃ − B̃p) +

Z T

0
Φ
′

L(Ũs − Ups )(
5γ

2
|ms(Ṽs − V ps )|2 + 2ᾱs +

5γ

2
|msṼs|2)dCs

!
.

Transferring now E
` R T

0 Φ
′

L(Ũs − Ups )( 5γ
2 |ms(Ṽs − V ps )|2)dCs

´
in the left-hand side of

this inequality and using properties of ΦL and, in particular, (3.11), we obtain

EΦL(Ũ0 − Up0 ) +
1

2
E

 Z T

0
|ms(Ṽs − V ps )|2dCs + |ÑT −Np

T |
2

!

≤ E

 
ΦL(B̃ − B̃p) +

Z T

0
Φ
′

L(Ũs − Ups )(2ᾱs +
5γ

2
|msṼs|2)dCs

!
.

Thanks to the convergence of (Ũs − Ups ) to 0 (holding true P-a.s. and for all s) and

since |mṼ |2 and ᾱ are in L1(dC⊗dP), the dominated convergence theorem entails the

convergence of the right-hand side to 0. Taking the limit sup over p in the left-hand

side, it yields

lim sup
p→∞

E

 
1

2
E

 Z T

0
|ms(Ṽs − V ps )|2dCs + |ÑT −Np

T |
2

!!
≤ 0,

which ends the proof.

ut

4 Applications to finance

In this section, we study the problem (1.1) stated in the introduction for three types

of utility functions.

4.1 The case of the exponential utility

Theorem 4.1 • For any fixed t, the value process given at time t by V Bt can be

expressed in terms of the unique solution (Y,Z, L) of BSDE of type (Eq1) given by

(Fα, β, B)

V Bt (x) = Uα(x− Yt). (4.1)

The constant β corresponds to the risk-aversion parameter α, B is the contingent claim

and Fα is the generator, whose expression is given by

Fα(s, z) = inf
ν∈C

`α
2
|ms(ν − (z +

λs
α

))|2
´
− (msz)

′
(msλs)−

1

2α
|msλs|2.
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• There exists an optimal strategy: ν∗ = (ν∗s )s∈[t, T ] such that: ν∗ ∈ At, and satisfying,

P-a.s. and for all s,

ν∗s ∈ argmin
ν∈C
|ms(ν − (Zs +

λs
α

))|2. (4.2)

• Extending the definition of V Bt (x) to an arbitrary stopping time τ , we set

V Bτ (x) = esssup
ν

EFτ
 
Uα(x+

Z T

τ

X
i

νiu
dSiu
Siu
−B)

!
,

where, in this expression, all trading strategies ν are defined on [τ, T ]. Then, for any

τ ,

V Bτ (x) = Uα(x− Yτ ) = Rν
∗

τ ,

and we recover the formulation of the dynamic programming principle

∀ τ, σ, τ ≤ σ, F-stopping times, V Bτ (x) = EFτ (V Bσ (Xν∗,τ,x
σ )). (4.3)

Remark 4.2 To give sense to the expression V Bσ (Xν∗,τ,x
σ ), we refer to the footnote

given at the bottom of page 5: indeed and by definition, Xν∗,τ,x
σ = x+

Z σ

τ
ν∗u
dSu
Su

, is

an attainable wealth at time σ, when starting from x at time τ .

Proof To prove (4.1), we rely on the results obtained in Section 3 to claim the exis-

tence of a unique solution (Y,Z, U) of the BSDE(Fα, α,B). Then, using the expression

of Rν = Uα(Xν − Y ) obtained in the last paragraph of Section 2.1, we write

∀ s ∈ [t, T ], Rνs = Rνt M̃
ν
t,s exp(Aνs −Aνt ),

with: M̃ν
t,s = Et,s(−α(ν −Z) ·M +αL). Since the continuous stochastic exponential is

a positive local martingale and since: Aν ≥ 0, there exists a sequence of stopping time

(τn) such that (Rν·∧τn) is a supermartingale (for each ν), which entails

∀ s, t ≤ s ≤ T, ∀ A ∈ Ft, E
`
Rνs∧τn1A

´
≤ E

`
Rνt∧τn1A

´
.

Using the definition of admissibility and the boundedness of Y , we obtain the uni-

form integrability of (Rνt∧τn) and (Rνs∧τn). Passing to the limit, we get: E
`
Rνs1A

´
≤

E
`
Rνt 1A

´
, which entails the supermartingale property of Rν , as soon as: ν ∈ At. Both

this supermartingale property and the relation: Rνt = Uα(x− Yt), imply

V Bt (x) = ess sup
ν∈At

EFt(Uα(Xν,x,t
T −B) ≤ Uα(x− Yt).

Now, to obtain the equality (4.1), we focus on the second point of Theorem 4.1.

Since: z → Fα(s, z) is a continuous functional of z, which tends to +∞, as |z| goes

to ∞, the infimum in the expression of Fα exists. Furthermore, relying on the same

selection argument as in lemma 11 in [12] and thanks to the continuity of the functional

and the predictability of the processes λ and Z, there exists a measurable choice of ν∗s
satisfying (4.2), i.e. Aν

∗
≡ 0. To check that: ν∗ ∈ At, we argue that, from the choice

of ν∗ given in Theorem 4.1 and since 0 is in C,

∀ s ∈ [0, T ], |ms(ν
∗
s − (Zs +

λs
α

))| ≤ |ms(Zs +
λs
α

)|.
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Since: |ms(ν
∗
s−Zs))| ≤ |ms(ν

∗
s−(Zs+

λs
α ))|+|ms

λs
α |, we obtain a control of |m(ν∗−Z))|

depending only on the processes Z and λ. Hence and thanks to Kazamaki’s criterion

(see [14]), E(−α(ν∗ −Z) ·M) is a true martingale. The process Rν
∗
, such that, for all

s, s ≥ t
Rν
∗

s = −e−α(x−Yt)Et,s(−α(ν∗ − Z) ·M + αL),

is a true martingale, which implies that: ν∗ ∈ At and the equality (4.1) .

To recover the dynamic programming principle, we define the Fτ -measurable ran-

dom variable V Bτ (x) the same way as V Bt (x) and for any F-stopping time τ . The same

procedure as the one used to prove (4.1) entails

V Bτ (x) = Uα(x− Yτ ) = Uα(Xν∗,τ,x
τ − Yτ ) = Rν

∗

τ .

Applying the optional sampling theorem between τ and σ to the martingale Rν
∗

defined

by: Rν
∗

= Uα(Xν∗,τ,x − Y ), we get (4.3).

ut

4.2 Power and logarithmic utilities

As in [12], we introduce two other types of utility functions:

– The first one is the power utility, defined for all real γ, γ ∈]0, 1[, by: Uγ(x) = 1
γ x

γ

(γ being fixed, we write U1 instead of Uγ).

– The second one is the logarithmic utility, given by: U2(x) = ln(x).

Contrary to the exponential case, we have to impose that the wealth process is positive.

We focus our attention to the case where there is no liability any more (i.e. B ≡ 0, in

the problem (1.1)). In this context, a constrained trading strategy is a d-dimensional

process ρ, which takes its values in the constraint set C and such that, for each i, ρi

stands for the part of the wealth invested in stock i. The discounted price process S

is again assumed to satisfy (2.1) and we denote by: Xρ = Xρ,t,x, the wealth process

associated with the strategy ρ and such that: Xρ
t = x. Its expression for any s, s ∈ [t, T ],

is

Xρ
s = x+

Z s

t
Xρ
uρu

dSu
Su

= x+

Z s

t
Xρ
uρudMu +

Z s

t
Xρ
uρ
′

ud〈M〉uλu.

The decomposition of the price process S is the same as in Section 1.2 and, in particular,

λ is a predictable Rd-valued process. For each case, we give in subsections 4.2.1 and 4.2.2

a definition of the admissibility set for trading strategies (this set is always denoted by

At). Denoting by U the utility function, we are going to characterize the value process

associated to the utility maximization problem with liability equal to zero: this process

is defined at time t by

Vt(x) = ess sup
ρ, ρ∈At

EFt(U(x+

Z T

t
Xρ
uρu

dSu
Su

)). (4.4)
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4.2.1 The power utility case

Definition 4.3 The set of admissible strategies At consists of all d-dimensional pre-

dictable processes ρ = (ρs)s∈[t,T ] such that: ρs ∈ C (P-a.s. and for all s) as well as

Z T

t
ρ
′

sd〈M〉sρs =

Z T

t
|msρs|2dCs <∞, P- a.s.

This condition entails that the stochastic exponential E(ρ ·M) is a continuous local

martingale. We can now solve the problem (4.4) for the power utility function U1.

Theorem 4.4 Let V 1 be the value process associated with the problem (4.4) and having

for utility function: U = U1.

• Its expression is

V 1
t (x) =

xγ

γ
exp(Yt).

In this expression, (Y,Z, L) stands for the unique solution of the BSDE(f1, 1
2 , 0) of

type (Eq1)

Yt = 0−
Z T

t
f1(s, Zs)dCs +

Z T

t

1

2
d〈L〉s −

Z T

t
ZsdMs − (LT − Lt),

the process L is a real-valued martingale strongly orthogonal to M and the expression

of the generator f1 is given by

f1(s, z) = inf
ρ, ρ∈C

γ(1− γ)

2

„
|ms(ρ− (

z + λs
1− γ ))|2

«
−γ(1− γ)

2
|ms(

z + λs
1− γ )|2 − 1

2
|msz|2. (4.5)

• There exists an optimal strategy ρ∗1 satisfying, P-a.s. and for all s,

(ρ∗1)(s) ∈ arg min
ρ, ρ∈C

|ms(ρ− (
Zs + λs

1− γ ))|2. (4.6)

Remark 4.5 The expression of the optimal strategy ρ∗ is already known in the brownian

setting and when there is no trading constraints: in that case, the wealth process Xπ

satisfies

dXπ
s = rXπ

s ds+Xπ
s

`
σsπsdWs + (µ− r)πsds

´
. (4.7)

In the elementary case of constant coefficients in (4.7), the optimal proportion is equal

to µ−r
(1−γ)σ2 (this result can be found in [6] or also in the seminal paper of [15]). In [25],

the author generalizes those previous results assuming that the price process is a geo-

metric brownian motion and assuming that there exists an additional asset, which is

driven by another brownian motion correlated to the first one: in that case, the explicit

formula for the optimal strategy incorporates the effect of the correlation factor.
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Proof We just give a sketch of the proof, which is similar to the one given in the

exponential case and relies on the same dynamic method as in [12]. To this end, we

define the process Rρ for all s, s ∈ [t, T ], by: Rρs = Xρ
s exp(Ys). We first write

Xρ
s = x+

Z s

t
Xρ
uρudMu +

Z s

t
Xρ
u(muρu)

′
(muλu)dCu,

and since Y is solution of the BSDE(f1, 1
2 , 0), simple computations leads to

Rρs = Rρt
1

γ
Et,s((γρ+ Z) ·M + L) exp(Ãρs − Ãρt ),

where the process Ãρ is such that

Ãρs =

Z s

0

`
f1(u, Zu) +

1

2
|muZu|2 +

γ(γ − 1)

2
|muρu|2 + γ(muρu)

′
(mu(Zu + λu))

´
dCu.

By the definition of f1, we check:

• Rρ is a supermartingale for any ρ, ρ ∈ At,
• Rρ

∗
is a martingale for any strategy ρ∗1 satisfying (4.6), taking into consideration

that, for such a strategy, we have: |mρ∗1| ≤ |m
(Z+λ)
(1−γ)

|.
Besides, we obtain

V 1
t (x) = EFt(Rρ

∗
1
T ) = R

ρ∗1
t =

xγ

γ
exp(Yt).

ut

4.2.2 The logarithmic utility case

We again introduce the notion of admissible strategy adapted to our problem.

Definition 4.6 The set of admissible strategies At consists of all d-dimensional pre-

dictable processes ρ such that, ρs ∈ C, P-a.s. and for all s, and such that

E
` Z T

t
ρ
′

sd〈M〉sρs
´

= E
` Z T

t
|msρs|2dCs

´
<∞.

Theorem 4.7 Let V 2 be the value process associated with the problem (4.4) and hav-

ing for utility function: U = U2.

• Its expression is V 2
t (x) = ln(x) + Yt: Y stands for the unique solution of the

BSDE(f2, 0) of type (Eq2)

Yt = 0−
Z T

t
f2(s)dCs −

Z T

t
ZsdMs −

Z T

t
dLs,

and the expression of the generator f2 is

f2(s) = inf
ρ, ρ∈C

1

2
|ms(ρ− λs)|2 −

1

2
|msλs|2. (4.8)

• There exists an optimal strategy ρ∗2 satisfying (P-a.s. and for all s)

(ρ∗2)(s) ∈ arg min
ρ, ρ∈C

|ms(ρ− λs)|2. (4.9)
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Remark 4.8 As in the power utility case, we recover the expression of the optimal

proportion in the brownian setting. Assuming that the coefficients µ, σ and r are

constants, this proportion is equal to: ρ∗ ≡ (µ−r)
σ2 .

Proof The wealth process Xρ satisfies again

Xρ
s = x+

Z s

t
Xρ
uρudMu +

Z s

t
Xρ
u(muρu)

′
(muλu)dCu.

Now, using both Itô’s formula and the assumption that Y solves a BSDE of type (Eq2),

it yields

Rρs = ln(Xρ
s ) + Ys = ln(x) + Yt +

Z s

t

`
(ρu + Zu)dMu + dLu

´
+Aρ2(s)−Aρ2(t),

where the process Aρ2 is such that

Aρ2(s) =

Z s

0
(f2(u)− 1

2
|muρu|2 + (muρu)

′
(muλu))dCu.

From the definition of f2, we obtain: Aρ2 ≤ 0, and we deduce:

• ln(Xρ) + Y is a supermartingale, for any ρ such that ρ ∈ At.
If, besides, ρ∗2 satisfies (4.9) then: A

ρ∗2
2 = 0 and hence: |m(ρ∗2 − λ)| ≤ |mλ|. The

assumption (Hλ) on λ implying the uniform integrability of Rρ
∗
2 , we can claim

• ln(Xρ∗2 ) + Y is a martingale.

Such a strategy ρ∗2 is optimal and applying the optional sampling theorem to Rρ
∗
2 , we

get

V 2
t (x) = EFt(Rρ

∗
2
T ) = R

ρ∗2
t = ln(x) + Yt.

ut

5 Conclusion

In this paper, we have solved the utility maximization problem by characterizing

both the value process and the optimal strategies: the novelty of our study is that we

have used a dynamic method in the context of a general (and non necessarily Brow-

nian) filtration and in presence of portfolio constraints. This last assumption entails

that the introduced BSDEs have quadratic growth.

Since we are not in the Brownian setting, the first part of our work consists in jus-

tifying new existence and uniqueness results for solutions of a specific type of quadratic

BSDEs. This study leads to an expression of the value process in terms of a solution of

a BSDE of the previous type. Relying on the dynamic principle, we are able to char-

acterize this value process for three cases of utility functions. This type of BSDE has

already been studied in a particular case in [18] in connection with the notion of indif-

ference utility price. However, one of the main difference in [18] is that no constraints

are imposed on the portfolio. Furthermore and contrary to our setting, they refer to

duality methods. Our study depends heavily on the assumption that the filtration is

continuous and we hope to study the case when jumps are allowed. Another perspective

is to study the connection with the problem of utility indifference pricing.

Acknowledgements I express my gratitude to Professor Schweizer and to Professor Jean-
blanc for helpful discussions and to the anonymous referees for their valuable comments, which
allow me to improve greatly the previous versions of my paper.
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6 Appendix: proof of proposition 3.2

Contrary to lemma 3.1, where the process Y is supposed to be in S∞, in this propo-

sition, the process Un is only assumed to be in S2. First, we apply Itô’s formula to

(eΓCt |Unt |2), Γ being a non negative constant

d(eΓCt |Unt |2) = ΓeΓCt |Unt |2dCt + eΓCt
`
2Unt dU

n
t + d〈Un〉t

´
, (6.1)
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with

2Unt dU
n
t + d〈Un〉t= −2Unt g

n(t, Unt , V
n
t )dCt + |mtV

n
t |2dCt + d〈Nn〉t

+ 2Unt
`
V nt dMt + dNn

t

´
.

Since (Un, V n, Nn) is in S2 ×L2(d〈M〉 × dP)×M2([0, T ]), it follows that the process

K defined by

∀ s ∈ [0, T ], Ks =

Z s

0
2eΓCuUnu

`
V nu dMu + dNn

u

´
, (6.2)

is a true martingale. We now fix t (t ∈ [0, T ]) and we rewrite Itô’s formula (6.1) between

s (t ≤ s ≤ T ) and T

eΓCs |Uns |2 − eΓCT |UnT |
2 =

Z T

s
eΓCuUnu

`
− ΓUnu + 2gn(u, Unu , V

n
u )
´
dCu

−
Z T

s
eΓCu

`
|muV

n
u |2dCu + d〈Nn〉u

´
−
`
KT −Ks

´
.

Relying on the Lipschitz property of the generator gn, we get

2|Unu ||gn(u, Unu , V
n
u )| ≤ 2|Unu ||gn(u, 0, 0)|+ 2Ln

`
|Unu |2 + |Unu ||muV

n
u |
´
,

and using the inequality: |2Lnab| ≤ (2(Ln)2a2 + 1
2 b

2), we obtain

2Ln|Unu ||muV
n
u | ≤ 2(Ln)2|Unu |2 +

1

2
|muV

n
u |2.

Combining these two last inequalities, setting: Γ = 2((Ln)2 + Ln), and taking the

expectation w.r.t Ft in Itô’s formula applied to eΓCs |Uns |2 between t and T , it yields

eΓCt |Unt |2 ≤ E
“
eΓCT |UnT |

2|Ft
”

+ E

 Z T

t
eΓCu

`
2|Unu ||gn(u, 0, 0)|+ 1

2
(|muV

n
u |2)

´
dCu|Ft

!

−E

 Z T

t
eΓCu

`
|muV

n
u |2dCu + d〈Nn〉u

´
|Ft

!
.

This leads to

E

 Z T

t
eΓCu

`
|muV

n
u |2dCu + d〈N〉u

´
|Ft

!

≤ 2

 
E
`
eΓCT |UnT |

2 + 2

Z T

t
eΓCu |Unu ||gn(u, 0, 0)|dCu|Ft

´!
. (6.3)



28

We come back to Itô’s formula (6.1) for the process eΓC· |Un· |2 between s and T . Taking

the supremum over s (s ∈ [t, T ]), it follows

sup
t≤s≤T

eΓCs |Uns |2 ≤ eΓCT |UnT |
2

+ 2

Z T

t
eΓCu |Unu ||gn(u, 0, 0)|dCu + sup

t≤s≤T
|KT −Ks|.

Applying the Burkholder-Davis-Gundy inequality to the supremum of the square inte-

grable martingale K and the relation: Cab ≤ C2

2 a2 + 1
2 b

2, we deduce the existence of

a constant C such that

E

 
sup

t≤s≤T
eΓCs |Uns |2|Ft

!
≤ E

 
eΓCT |UnT |

2 + 2

Z T

t
eΓCu |Unu ||gn(u, 0, 0)|dCu|Ft

!

+C2

2 E

 Z T

t
eΓCu

`
|muV

n
u |2dCu + d〈N〉u

´
|Ft

!
+

1

2
E

 
sup

t≤s≤T
eΓCs |Uns |2|Ft

!
,

where the constant C is generic and may vary from line to line. Combining this last

inequality with (6.3), we deduce

E

 
sup

t≤s≤T
eΓCs |Uns |2 +

Z T

t
eΓCu

`
|muV

n
u |2dCu + d〈N〉u

´
|Ft

!

≤ CE

 
eΓCT |UnT |

2 +

Z T

t
eΓCu |Unu ||gn(u, 0, 0)|dCu|Ft

!
.

To obtain the desired relation, we use a last estimate of the last term in the right-hand

side of the previous inequality

CE

 Z T

t
eΓCu |Unu ||gn(u, 0, 0)|dCu|Ft

!

≤ 1
2E

 
sup

t≤u≤T
eΓCu |Unu |2|Ft

!
+ C2

2 E

 `Z T

t
e
Γ
2 Cu |gn(u, 0, 0)|dCu

´2|Ft! .
We can now claim that the relation (3.9) given in proposition 3.2 holds true, using that

eΓCt |Unt |2 ≤ E

 
sup

t≤u≤T
eΓCu |Unu |2|Ft

!
.

To deduce the boundedness of Un in S∞, we use the two following properties: on the

one hand, |gn(u, 0, 0)| ≤ ᾱu, with the process ᾱ satisfying:

Z T

0
ᾱsdCs ≤ a <∞, P-a.s.

and, on the other hand and for all n, the random variable UnT such that: UnT = eβB is

bounded.
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